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Phase Noise at PLL Output
This example shows how to predict the phase noise at the output of a phase-locked loop (PLL),
simulate the PLL using the PLL Testbench, and compare the simulation results to theoretical
predictions.

This example demonstrates three phase noise effects, individually or combined, depending on the
configuration you choose:

1 Reference modulation or phase noise
2 VCO phase noise
3 VCO phase noise subsampled by the feedback prescaler

Open the model PllPhaseNoiseExample.slx.

open_system('PllPhaseNoiseExample.slx');
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This example uses an Integer N PLL with Single Modulus Prescaler from the Mixed Signal Blockset™.

The PLL Testbench generates the reference input signal for the PLL and measures the phase spectral
density at the output of the PLL.

The optional PRBS6 reference phase modulation in this model is used to contrast the response to
reference phase variation with the response to VCO phase noise.

The low pass resamplers at the inputs to the spectrum estimators are anti-aliasing filters. These
filters convert the variable step discrete signals to the fixed step discrete signals required by the
spectrum estimators.

The spectra of the PLL input and output signals are estimated and logged in the base workspace so
that you can compare the simulation results to the results of the theoretical calculations.

The oscilloscope in the example model provides a progress indicator for the simulation.

To evaluate the behavior of the PLL under a variety of conditions, use a separate workspace file for
each different set of conditions. This example provides five such supporting .mat files. All of them
produce the same loop transient response.

1 Baseline.mat - As close to ideal as possible. Use to evaluate numerical noise introduced by the
model and simulator.
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2 ReferenceModulation.mat - Introduce reference phase modulation. Use to evaluate the phase
transfer function of the PLL.

3 VCOPhaseNoise.mat - Introduce VCO phase noise and a prescaler ratio equal to one. Use to
evaluate the PLL control loop's error function.

4 InbandPhaseNoise.mat - Introduce VCO phase noise and a prescaler ratio greater than one.
Use to evaluate the effect of the prescaler ratio on the PLL control loop's error function.

5 TotalPhaseNoise.mat - All phase noise sources are enabled, and the prescaler ratio is greater
than one.

Theoretical Calculations

This section shows how to calculate the expected response of the PLL.

The target loop bandwidth of the PLL is 2 MHz with a 45 degree phase margin. The loop filter
components are scaled to practical level and the charge pump output current is scaled by the same
factor to maintain the same loop dynamics.

The function getPllLoopResponse calculates the loop gain as a function of frequency and then
calculates the expected response to signals from outside or inside the PLL. Define the input
parameters such as charge pump output current, VCO sensitivity, prescaler ratio and passive loop
filter component values for the getPllLoopResponse function to use.

PllKphi = 5e-3;     % Charge Pump output current
PllKvco = 100e6;    % VCO sensitivity
PllN    = 70;       % Prescaler ratio
PllR2   = 1.33e3;   % Loop filter resistance for second order response (ohms)
PllR3   = 1.7e4;    % Loop filter resistance for third order response (ohms)
PllR4   = 0;        % Loop filter resistance for fourth order response (ohms)
PllC1   = 1.31e-11; % Loop filter direct capacitance (F)
PllC2   = 1.44e-10; % Loop filter capacitance for second order response (F)
PllC3   = 9.41e-13; % Loop filter capacitance for third order response (F)
PllC4   = 0;        % Loop filter capacitance for fourth order response (F)

The script prepareExpectedSpectra computes the spectral density of the reference phase
modulation and the VCO output phase noise. The script then also combines the result with the PLL
loop response to obtain the phase noise spectral density at the output of the PLL. The reference
phase modulation is a deterministic process for which the amplitude of the spectral components is
expressed as a fraction of the carrier amplitude (dBc). In contrast, the VCO phase noise is a
stochastic process for which the spectral density is expressed in dBc/Hz.

Define the input parameters for the prepareExpectedSpectra script such as reference input
frequency, number of reference cycles per symbol of PRBS6 phase modulation data pattern,
amplitude of a single spectral component of the PRBS6 reference phase modulation, resolution
bandwidth to evaluate spectra with phase noise, frequency offset vector, and phase noise spectral
densities at specified frequency offset.

PllAddPhaseNoise = 'on'; % Enable VCO phase noise
PllFoffset    = [30e3 100e3 1e6 3e6 10e6]; % VCO offset frequencies (Hz)
PllPhaseNoise = [-56 -106 -132 -143 -152]; % VCO output phase noise (dBc/Hz)
CfgSelectRefMod = '0';   % Enable reference phase noise modulation
CfgRef  = 30e6;          % Reference frequency
CfgCyclesPerSymbol = 2;  % Reference cycles per PRBS6 modulation symbol
CfgModLevel   = -110;    % Reference phase modulation level (dBc/Hz)
CfgResBandwidth = 100e3; % PLL Testbench resolution bandwidth
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CfgTargetSpectrum = [100e3 -145;1e6 -135;3e6 -140;10e6 -150];
                         % PLL Testbench target phase noise (dBc/Hz)

If the variable WorkspaceFile exists and points to a file that can be loaded, load that file into the
workspace. To use a configuration supplied with this example, set the value of WorkspaceFile to the
name of the file for that configuration.

if exist('WorkspaceFile','var') && exist(WorkspaceFile,'file')
    load(WorkspaceFile);
end

Analyze the PLL control loop using the getPllLoopResponse function. The outputs of this function
are:

• LoopFrequency - The frequency points at which the expected responses is calculated.
• LoopZofs - The transfer impedance of the loop filter as a function of the frequency.
• LoopGofs - The loop gain from the output of the prescaler to the input of the VCO, including the

VCO voltage sensitivity. Note that the prescaler ratio is not included in this output, but is included
in the closed loop transfer functions.

• LoopHofs - The closed loop phase transfer function fromt the PLL reference input to the PLL
output.

• LoopEofs - The closed loop phase error transfer function with respect to the VCO output.

[LoopFrequency, LoopZofs, LoopGofs, LoopHofs, LoopEofs, LoopPhStep] = ...
    getPllLoopResponse([0,PllR2,PllR3,PllR4],[PllC1,PllC2,PllC3,PllC4], ...
                        PllKphi,PllKvco,PllN);

Organize the computation of expected spectral density to place spectral components directly into the
frequency bins.

The workspace variables for the expected spectral density are:

• ExpInputFrequency - A vector of frequencies for which the expected input spectrum is
calculated (Hz).

• ExpInputSpectrum - A vector of expected spectrum values at the reference input to the PLL
(dBm into a one ohm load at a resolution bandwidth of CfgResBandwidth).

• ExpOutputFrequency - A vector of frequencies for which the expected output spectrum is
calculated (Hz).

• ExpOutputSpectrum - A vector of expected spectrum values at the PLL output (dBm into a one
ohm load at a resolution bandwidth of CfgResBandwidth).

prepareExpectedSpectra;

Examine Expected Results

In this section, examine the expected PLL behavior.

Start by looking at the closed loop response of the PLL. Consider three fundamental responses:
transient response, transfer function, and error function.

Transient response

In most PLL applications, the loop transient response is most important when the loop is initially
acquiring phase lock. For very small initial frequency offsets or for relatively high closed loop
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bandwidth, the transient response predicts the loop acquisition time reasonably accurately. However,
in many cases, the loop transient response only represents the response during phase acquisition,
after frequency acquisition has already occurred. This example only addresses the phase acquisition
time.

Plot the loop transient response of the PLL.

figure(1);
plot(LoopPhStep.Time,LoopPhStep.Data);
title({'PLL Loop Transient Response';'To Unit Input Phase Step'});
xlabel('Seconds');
ylabel('Output Phase');

Transfer function

The transfer function from the reference input to the PLL output can be important either when the
PLL is expected to track a modulated input very accurately or when it is expected to filter out noise
from a noisy input.

Create a log-log plot of the PLL transfer function.

figure(2);
semilogx(LoopFrequency,20*log10(abs(LoopHofs)));
title('PLL Transfer Function');
xlabel('Hz');
ylabel('dB');
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Error function

The PLL control loop is expected to reject phase noise generated inside the PLL itself, such as VCO
phase noise. The transfer function between the VCO phase noise and the PLL output is sometimes
called the loop error function. Examining this transfer function helps compensate the loop error
before it is applied to another noise source.

Create a log-log plot of the PLL loop error function.

figure(3);
semilogx(LoopFrequency,20*log10(abs(LoopEofs)));
title('PLL Loop Error Function');
xlabel('Hz');
ylabel('dB');
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Plot the total expected phase noise at the PLL output.

figure(4);
plot(ExpOutputFrequency,ExpOutputSpectrum);
title('PLL Output Spectrum');
xlabel('Hz');
ylabel('dBm into 1 ohm');
xlim([PllN*CfgRef-2*PllFoffset(end), PllN*CfgRef+2*PllFoffset(end)]);
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The phaseNoiseMeasure function is a callback function used by the PLL Testbench. It displays the
target output phase noise spectral density along with the simulated or expected phase noise spectral
density.

To compare the expected output phase noise to a specific design target, define the workspace
variable CfgTargetSpectrum. CfgTargetSpectrum consists of two column arrays that specify the
target phase noise at the output of the PLL. The first column specifies the frequency offsets in Hz and
the second column specifies the corresponding phase noise spectral density if dBc/Hz. The PLL
Testbench uses the callback function phaseNoiseMeasure to display the expected and simulated
phase noise spectral density.

View the expected PLL output phase noise in units of dBc/Hz.

[~] = phaseNoiseMeasure(ExpOutputFrequency,ExpOutputSpectrum,...
    CfgResBandwidth, CfgTargetSpectrum(:,1).','on','5', ...
    CfgTargetSpectrum(:,2).');
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If the loop response is not satisfactory, you might look at more detailed results such as the loop filter
transimpedance (LoopZofs) to get additional insights that could help you improve the PLL design.

Run the Simulation

While the configuration process is straightforward, there are many parameters to be configured. Use
the configureExamplePLL script to configure the PLL Simulink® model, then execute the model.

configureExamplePll;
SimOut = sim('PllPhaseNoiseExample');
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To make the plotting easier, transform the results into the following four workspace variables:

• SimInputFrequency - A vector of frequencies for which the input spectrum of the simulation is
stored (Hz).

• SimInputSpectrum - A vector of spectrum values at the reference input to the PLL (dBm into a
one ohm load at a resolution bandwidth of CfgResBandwidth).

• SimOutputFrequency - A vector of frequencies for which the output spectrum of the simulation
is calculated (Hz).

• SimOutputSpectrum - A vector of simulated spectrum values at the PLL output (dBm into a one
ohm load at a resolution bandwidth of CfgResBandwidth).

Make the results easier to plot from the workspace.

SimInputFrequency = reshape(SimOut.InputFrequency.Data(:,end),1,[]);
SimInputSpectrum = reshape(SimOut.InputSpectrum.Data(:,end),1,[]);
SimOutputFrequency = reshape(SimOut.OutputFrequency.Data(:,end),1,[]);
SimOutputSpectrum = reshape(SimOut.OutputSpectrum.Data(:,end),1,[]);

Compare Expected and Simulated Results

Compare expected and simulated phase noise at the PLL output.

figure(4);
plot(ExpOutputFrequency,ExpOutputSpectrum);
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title('PLL Output Spectrum');
xlabel('Hz');
ylabel('dBm into 1 ohm');
xlim([PllN*CfgRef-2*PllFoffset(end), PllN*CfgRef+2*PllFoffset(end)]);
hold on;
plot(SimOutputFrequency,SimOutputSpectrum);
hold off;

View the expected PLL output phase noise in units of dBc/Hz.

[~] = phaseNoiseMeasure(SimOutputFrequency,SimOutputSpectrum,...
    SimOutputFrequency(2)-SimOutputFrequency(1),...
    CfgTargetSpectrum(:,1).','on','5',CfgTargetSpectrum(:,2).');
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Save the Configuration and Results

Save the entire workspace, including the system configuration in its current state and the results, to
a file. If the WorkspaceFile variable already exists, you can resave the current state to that file. To
save to a new file, change the value of WorkspaceFile.

if exist('WorkspaceFile','var')
    save(WorkspaceFile);
end

See Also
Integer N PLL with Single Modulus Prescaler | PLL Testbench | Variable Pulse Delay

More About
• “PLL Design and Verification Using Data Sheet Specifications” on page 1-14
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PLL Design and Verification Using Data Sheet Specifications
This example shows how to use Mixed-Signal Blockset™ to model a commercial off-the-shelf integer-
N phase-locked loop (PLL) with dual modulus prescaler operating around 4 GHz. You can verify the
PLL performance, including phase noise.

You can use PLL models to explore and design different loop filters, simulate different operating
frequencies, determine different divider ratios, or assess the frequency synthesizer performance once
embedded in a larger system. For example, Mixed-Signal Blockset PLL models can be helpful if you
need to integrate a PLL into a System on Chip or a System on Board.

For this example, use the data sheet of Skyworks SKY73134-11. This is a wideband PLL Frequency
Synthesizer operating between 350 MHz and 6.2 GHz.

Build VCO Model

Open the model VCO_model, which has VCO and VCO Testbench blocks from Mixed-Signal Blockset
connected together.

model = 'VCO_model';
open_system(model);

Inspect the data sheet to identify the characteristics of the voltage controlled oscillator (VCO). VCO is
the main component contributing to the phase noise of the PLL. Table 6 of the data sheet lists the
typical VCO sensitivity (Kvco) as 20 MHz/V. Set the Voltage Sensitivity of the VCO block to 20e6
Hz/V. The data sheet does not provide the free running frequency (Fo) of the VCO, so you can set it to
an arbitrary value close to the operting frequency. In this case, set Free running frequency to
3.9e9 Hz.

For this example, simulate the PLL behavior when the PLL locks around 4 GHz. Table 7 of the data
sheet lists the VCO phase noise profile as: around 4 GHz is,

• −105 dBc/Hz at 100 kHz
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• −131 dBc/Hz at 1 MHz
• −142 dBc/Hz at 3 MHz
• −152 dBc/Hz at 10 MHz

Use the phase noise profile to add phase noise impairment to the VCO. To speed up simulation, ignore
the phase noise data points at lower frequency offsets. Simulation takes longer to capture the phase
noise profile close to the carrier.

Measure VCO Phase Noise

The testbench provides the control voltage (Vctrl) stimulus to the VCO and measures the VCO phase
noise. The output frequency (F) of the VCO is :

Substituting the values for the output frequency, the free running frequency, and the voltage
sensitivity, the equation gives a control voltage of be 5 V.

Click on Autofill setup parameters and Autofill target metric buttons to automatically populate
the measurement parameters for both setup and target metric. The target metric provides the
anticipated phase noise profile for comparison with the simulation results. The testbench setup
properties define the signal sampling frequency and the measurement resolution bandwidth.

To speed up simulation time, reduce No. of spectral averages to 4.

Run the simulation. Verify that the VCO model reproduces the phase noise profile specified in the
target metric.
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You can now proceed with modeling the complete PLL system and verify its phase noise performance.

Build PLL Model

From the Features section of the data sheet, see that this PLL is of type integer-N and it uses a dual
modulus prescaler. The data sheet also provides the settings for the prescaler. Hence, use the
Integer-N PLL with Dual Modulus Prescaler from Mixed-Signal Blockset.

bdclose(model);
model = 'PLL_model';
open_system(model);
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Open the mask of the PLL block and provide the specs for each of the subsystems:
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• Phase Frequency Detector — For the phase frequency detector (PFD), the data sheet does not
provide any detail. Leave the deadband compensation to its default value.

• Charge Pump — For the charge pump, the data sheet provides the typical value for the current of
2.7 mA (data sheet, Table 5). Specify the same value in the PLL model.

• VCO — For the VCO, use the same specifications used in the Build VCO Model section. The
sensitivity is equal to 20 MHz/V. Specify a free running frequency that is close to the final locking
frequency, for example 4.18 GHz. Include phase noise with the same noise profile that you just
simulated.

• Divider — For the PLL to lock at 4.2 GHz when using a reference oscillator operating at 1.6 MHz
(data sheet, Figure 17), the divider ratio is equal to:

To achieve the effective divider ratio of 2625, set the Prescaler divider value to 16, Swallow
counter value to 17, and Program counter value to 163.

• Loop Filter — The data sheet provides the recommended loop filter component values in Figure
22. Manually input these values to implement the filter. Set Loop filter type to 3rd order passive.
Also set the loop filter component values:

C1 = 100e-12 F

C2 = 2.2e-9 F

C3 = 100e-12 F

R2 = 10e3 

R3 = 2.2e3 

Verify the closed and open loop performance of the PLL with this implementation of the loop filter.
The resulting phase margin is 55 degrees. The phase margin along with the pole zero locations
confirm the stability of the PLL.
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Use this setup to design different loop filters and verify your design. For example, use this PLL over a
different operating frequency.

Finally, to verify the PLL locking behavior in the time domain, probe and plot the output signal of the
loop filter.

Measure PLL Performance

Connect the PLL to a Mixed-Signal Blockset PLL Testbench to validate its performance. The
testbench defines the stimuli used to test the PLL. In this case, use a square waveform with 1.6 MHz
frequency.

Set up the testbench to measure operating frequency, lock time, and phase noise. The data sheet
specifies a 1 ms lock time with 1 ppm frequency error, that is to say 4.2 kHz (Table 5). Provide the
same error tolerance. For measuring the phase noise, use a configuration similar to the one used for
the VCO, but reduce the resolution bandwidth for higher accuracy.

For the target metric, refer to the data sheet for both the lock time (Table 5) and the closed loop
phase noise measurements performed on the evaluation board (Figure 17). The phase noise profile
measured at 4.2 GHz is:
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• −98 dBc/Hz at 100 kHz
• −129 dBc/Hz at 1 MHz
• −150 dBc/Hz at 10 MHz

With this setup, run the PLL simulation and verify the performance.
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In this case, the simulation takes a few minutes. To speed up simulation time, you can relax the
settings for measuring the phase noise. For example, use a larger resolution bandwidth or reduce the
number of spectral averages.

The simulation results are in excellent agreement with the phase noise measurements reported in the
data sheet.

Reference

Skyworks SKY73134-11

Copyright(C) 2019 The MathWorks, Inc. All rights reserved.

See Also
Integer N PLL with Dual Modulus Prescaler | PLL Testbench | VCO | VCO Testbench
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More About
• “Design and Evaluate Simple PLL Model”
• “Phase Noise at PLL Output” on page 1-2

 PLL Design and Verification Using Data Sheet Specifications

1-23



Tune Phase-Locked Loop Using Loop-Shaping Design
This example shows how to tune the components of a passive loop filter to improve the loop
bandwidth of a phase-locked loop (PLL) system. To obtain a desired loop frequency response, this
example computes the loop filter parameters using the fixed-structure tuning methods provided in the
Control System Toolbox™ software. The PLL system is modeled using a reference architecture block
from the Mixed-Signal Blockset™ library.

Introduction

A PLL is a closed-loop system that produces an output signal whose phase depends on the phase of its
input signal. The following diagram shows a simple model with a PLL reference architecture block
(Integer N PLL with Single Modulus Prescaler) and a PLL Testbench block.

The closed-loop architecture inside the PLL block consists of a phase-frequency detector (PFD),
charge pump, loop filter, voltage controlled oscillator (VCO), and prescaler.
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The Mixed-Signal Blockset library provides multiple reference architecture blocks to design and
simulate PLL systems in Simulink®. You can tune the components of the Loop Filter block, which is a
passive filter, to get the desired open-loop bandwidth and phase margin.

Using the Control System Toolbox software, you can specify the shape of the desired loop response
and tune the parameters of a fixed-structure controller to approximate that loop shape. For more
information on specifying a desired loop shape, see “Loop Shape and Stability Margin Specifications”
(Control System Toolbox). In the preceding PLL architecture model, the loop filter is defined as a
fixed-order, fixed-structure controller. To achieve the target loop shape, the values of the resistances
and capacitances of the loop filter are tuned. Doing so improves the open-loop bandwidth of the
system and, as a result, reduces the measured lock time.

Set Up Phase-Locked Loop Model

Open the model.

model = 'PLL_TuneLoopFilter';
open_system(model)

The PLL block uses the configuration specified in “Design and Evaluate Simple PLL Model” for the
PFD, Charge pump, VCO, and Prescalar tabs in the block parameters. The Loop Filter tab
specifies the type as a fourth-order filter, and sets the loop bandwidth to 100 kHz and phase margin
to 60 degrees. The values for the resistances and capacitances are automatically computed.

To observe the current loop dynamics of the PLL, in the block parameters, on the Analysis tab, select
Open Loop Analysis and Closed Loop Analysis. The unity gain frequency is 100 kHz. The closed-
loop system is stable and the 3-dB bandwidth is 128.94 kHz.
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Simulate the model. The PLL Testbench block displays the PLL lock time and phase noise metrics. To
plot and analyze the phase noise profile, in the PLL Testbench block parameters, on the Stimulus
tab, select Plot phase noise. The measured lock time is 2.30 microseconds.

open_system([model,'/Scope'])
sim(model);
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Define the PLL parameters needed to build the closed-loop system in MATLAB®.

PllKphi = 5e-3;     % Charge pump output current
PllKvco = 1e8;      % VCO sensitivity
PllN    = 70;       % Prescaler ratio

PllR2   = 88.3;     % Loop filter resistance for second-order response (ohms)
PllR3   = 253;      % Loop filter resistance for third-order response (ohms)
PllR4   = 642;      % Loop filter resistance for fourth-order response (ohms)
PllC1   = 8.13e-10; % Loop filter direct capacitance (F)
PllC2   = 1.48e-7;  % Loop filter capacitance for second-order response (F)
PllC3   = 1.59e-10; % Loop filter capacitance for third-order response (F)
PllC4   = 9.21e-11; % Loop filter capacitance for fourth-order response (F)

Build Custom Tunable System

To model the loop filter as a tunable element, first create tunable scalar real parameters (see realp
(Control System Toolbox)) to represent each filter component. For each parameter, define the initial
value and bounds. Also, specify whether the parameter is free to be tuned.

Use the current loop filter resistance and capacitance values as the initial numeric value of the
tunable parameters.

% Resistances
R2 = realp('R2',PllR2);
R2.Minimum = 50;
R2.Maximum = 2000;
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R2.Free = true;

R3 = realp('R3',PllR3);
R3.Minimum = 50;
R3.Maximum = 2000;
R3.Free = true;

R4 = realp('R4',PllR4);
R4.Minimum = 50;
R4.Maximum = 2000;
R4.Free = true;

% Capacitances
C1 = realp('C1',PllC1);
C1.Minimum = 1e-12;
C1.Maximum = 1e-7;
C1.Free = true;

C2 = realp('C2',PllC2);
C2.Minimum = 1e-12;
C2.Maximum = 1e-7;
C2.Free = true;

C3 = realp('C3',PllC3);
C3.Minimum = 1e-12;
C3.Maximum = 1e-7;
C3.Free = true;

C4 = realp('C4',PllC4);
C4.Minimum = 1e-12;
C4.Maximum = 1e-7;
C4.Free = true;

Using these tunable parameters, create a custom tunable model based on the loop filter transfer
function equation specified in the More About section of the Loop Filter block reference page.
loopFilterSys is a genss (Control System Toolbox) model parameterized by R2, R3, R4, C1, C2,
C3, and C4.

Z(s) =
R2C2s + 1

s(A4s3 + A3s2 + A2s + A1)

A4 = C1C2C3C4R2R3R4
A3 = C1C2R2R3(C3 + C4) + C4R4(C2C3R3 + C1C3R3 + C1C2R2 + C2C3R2)
A2 = C2R2(C1 + C3 + C4) + R3(C1 + C2)(C3 + C4) + C4R4(C1 + C2 + C3)
A1 = C1 + C2 + C3 + C4

A4 = C1*C2*C3*C4*R2*R3*R4;
A3 = C1*C2*R2*R3*(C3+C4)+C4*R4*(C2*C3*R3+C1*C3*R3+C1*C2*R2+C2*C3*R2);
A2 = C2*R2*(C1+C3+C4)+R3*(C1+C2)*(C3+C4)+C4*R4*(C1+C2+C3);
A1 = C1+C2+C3+C4;

loopFilterSys = tf([R2*C2, 1],[A4, A3, A2, A1, 0]);

Use the transfer function representations to define the fixed blocks in the architecture (charge pump,
VCO, and prescaler), based on their respective frequency response characteristics [1].

1 PLL Featured Examples

1-30



chargePumpSys   = tf(PllKphi,1);       % Linearized as a static gain
vcoSys          = tf(PllKvco,[1 0]);   % Linearized as an integrator
prescalerSys    = tf(1/PllN,1);        % Linearized as a static gain

Define input and output names for each block. Connect the elements based on signal names (see
connect (Control System Toolbox)) to create a tunable closed-loop system (see genss) representing
the PLL architecture as shown.

chargePumpSys.InputName = 'pfd_out';                % Charge pump (fixed block)
chargePumpSys.OutputName = 'cp_out';

loopFilterSys.InputName = 'cp_out';                 % Loop filter (tunable block)
loopFilterSys.OutputName = 'lf_x';

AP = AnalysisPoint('X');                            % Analysis point does not change the architecture of closed-loop system
AP.InputName = 'lf_x';
AP.OutputName = 'lf_out';

vcoSys.InputName = 'lf_out';                        % VCO (fixed block)
vcoSys.OutputName = 'vco_out';

prescalerSys.InputName = 'vco_out';                 % Prescaler (fixed block)
prescalerSys.OutputName = 'prescaler_out';

pfd = sumblk('pfd_out = ref - prescaler_out');      % Phase-frequency detector (sum block)    

% Create a genss model for the closed-loop architecture
CL0 = connect(chargePumpSys,loopFilterSys,AP,vcoSys,prescalerSys,pfd,'ref','vco_out');

Loop-Shaping Design

Define the loop gain as a frequency-response data model (see frd (Control System Toolbox)) by
providing target gains for at least two decades below and two decades above the desired open-loop
bandwidth. The desired roll-off is typically higher, which results in a higher attenuation of phase
noise.

Specifying the appropriate target loop shape is the critical aspect of this design. The tunable
compensator is a fourth-order system with a single integrator and a single zero, and the plant
represents an integrator. The loop gains must be a feasible target for the open-loop structure.
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For tuning the loop filter, create a tuning goal based on a target loop shape specifying the integral
action, a 3 MHz crossover, and a roll-off requirement of 40 dB/decade. The goal is enforced for three
decades below and above the desired open-loop bandwidth.

LoopGain = frd([100,10,1,1e-2,1e-4],2*pi*[1e4,1e5,3e6,3e7,3e8]);    % frd uses response data and corresponding frequencies in rad/s     
LoopShapeGoal = TuningGoal.LoopShape('X',LoopGain);                 % Use AnalysisPoint as location where open-loop response shape is measured  
LoopShapeGoal.Focus = 2*pi*[1e3, 1e9];                              % Enforce goal in frequency range (use rad/s)
LoopShapeGoal.Name = 'Loop Shape Goal';                             % Tuning goal name

MarginsGoal = TuningGoal.Margins('X',7.6,60);
MarginsGoal.Focus = [0 Inf];
MarginsGoal.Openings = {'X'};
MarginsGoal.Name = 'Margins Goal';

Observe the current open-loop shape of the PLL system with reference to the target loop shape. S
represents the inverse sensitivity function and T represents the complementary sensitivity function.
By default, Control System Toolbox plots use rad/s as the frequency unit. For more information on
how to change the frequency unit to Hz, see “Toolbox Preferences Editor” (Control System Toolbox).

figure 
viewGoal(LoopShapeGoal,CL0)

Use systune to tune the fixed-structure feedback loop. Doing so computes the resistance and
capacitance values to meet the soft design goal based on the target loop shape. Run the tuning
algorithm with five different initial value sets in addition to the initial values defined during the
creation of the tunable scalar real parameters.
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Options = systuneOptions();
Options.SoftTol = 1e-5;      % Relative tolerance for termination
Options.MinDecay = 1e-12;    % Minimum decay rate for closed-loop poles
Options.MaxRadius = 1e12;    % Maximum spectral radius for stabilized dynamics
Options.RandomStart = 5;     % Number of different random starting points     

[CL,fSoft,gHard,Info] = systune(CL0,[LoopShapeGoal; MarginsGoal],[],Options);

Final: Soft = 2.61, Hard = -Inf, Iterations = 80
Final: Failed to enforce closed-loop stability (max Re(s) = 3.1e+04)
Final: Failed to enforce closed-loop stability (max Re(s) = 6.8e+04)
Final: Failed to enforce closed-loop stability (max Re(s) = 6.2e+04)
Final: Failed to enforce closed-loop stability (max Re(s) = 8e+04)
Final: Failed to enforce closed-loop stability (max Re(s) = 4.9e+04)

systune returns the tuned closed-loop system CL in generalized state-space form.

The algorithm fails to converge for the random initial values, and provides a feasible solution only
when the current loop filter component values are chosen as the initial conditions. For tuning
problems that are less complex, such as a third-order loop filter, the algorithm is less sensitive to
initial conditions and randomized starts are an effective technique for exploring the parameter space
and converging to a feasible solution.

Examine the tuned open-loop shape with reference to the target loop shape. Observe that while the
tuned loop shape does not meet the target, the open-loop bandwidth increases while the loop keeps
the same high-frequency attenuation.

figure 
viewGoal(LoopShapeGoal,CL)
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Export Results to Simulink Model

Extract the tuned loop filter component values.

Rtuned = [getBlockValue(CL,'R2'),...
          getBlockValue(CL,'R3'),...
          getBlockValue(CL,'R4')];

Ctuned = [getBlockValue(CL,'C1'),...
          getBlockValue(CL,'C2'),...
          getBlockValue(CL,'C3'),...
          getBlockValue(CL,'C4')];     

Write the tuned loop filter component values to the PLL block using the setLoopFilterValue
helper function provided with the example.

blk = [model,'/Integer N PLL with Single Modulus Prescaler'];
setLoopFilterValue(blk,Rtuned,Ctuned);

Observe the Open Loop Analysis and Closed Loop Analysis plots from the Analysis tab in the Integer
N PLL with Single Modulus Prescaler block parameters. The unity gain frequency and the 3-dB
bandwidth show improvement and are now 341.4 kHz and 511.72 kHz, respectively, while the loop
keeps the same phase noise profile.
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Simulate the model and get the PLL Testbench measurements and loop filter output with the tuned
components.

sim(model);
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Digital Phase Locked Loop
This example shows how to model a digital phase locked loop using the Mixed-Signal Blockset™. In a
digital phase locked loop, phase detection is performed by a time to digital converter (TDC), loop
filtering is performed by a digital filter, and the oscillator is a digitally controlled oscillator (DCO).
This example demonstrates a behavioral model of a TDC, use of the BiquadFilter from the DSP Systen
Toolbox™ as the digital loop filter, and use of VCOs and DACs from the Mixed-Signal Blockset to
model the DCO.

This example also demonstrates one method for designing the control loop of a digital PLL by using
the PLL architectures from the Mixed-Signal Blockset to design an analog PLL and then translate the
analog design to its digital equivalent.

Digital PLL

Open and run the example model of a digital PLL. Then select the PLL Testbench in the model and
click the Plot phase noise button (or call the button's callback function). Save loop filter waveform
and phase noise data for later comparison to analog PLL results.

open('DigitalPLL.slx');
simout = sim(gcs);
msblks.PLL.pllTBPlotPhaseNoiseButton([gcs '/PLL Testbench']);
dpll_vcntl = simout.dpll_vcntl;
getDigitalPllPhaseNoise;
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Time to Digital Converter

The behavioral model of the TDC uses triggered subsystems to sample the clock time at the rising
edges of the reference clock and the PLL's fractional divider. It then calculates the difference
between these two sampled clock times and converts to an eight bit integer output value. To model a
digital feedback loop clocked by the reference, the output port sample rate is set to the reference
frequency.

open_system('DigitalPLL/TDC','force');
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Digital Controlled Oscillator

The DCO model represents a circuit in which the control for a VCO is set by a digital to analog
converter (DAC). The conversion in the DAC is triggered by the reference clock.

The phase noise impairment in the VCO is enabled. The DAC model can also model impairments.
However the DAC impairments are not enabled in the example model.

You could alternatively model a DCO by directly setting a Mixed-Signal Blockset VCO's control
voltage array to an array of consecutive integers that spans the range of digital input values. Then
you can set the output frequency array to supply the output frequency for each possible input value.

open_system('DigitalPLL/DCO','force');

Digital Loop Filter

The loop filter is a BiquadFilter from the DSP System Toolbox. It is clocked at the reference clock
frequency by the output port of the TDC.

The digital loop filter is designed using the automated design feature of the Integer N PLL with
Single Modulus Prescaler model from the Mixed-Signal Blockset PLL Architectures library. An analog
loop filter is designed to achieve a specified loop bandwidth and phase margin, then the circuit values
and sample interval are translated to digital filter coefficients. To obtain the correct overall loop gain,
a scale factor is applied to the biquad filter model of the loop filter.

The derivation of the loop gain scale factor parallels that of A Design Procedure for All-Digital Phase-
Locked Loops Based on a Charge-Pump Phase-Locked-Loop Analogy.

The variables used in the derivation are

•  Charge pump maximum current amplitude
•  Analog loop filter transfer impedance
•  VCO sensitivity for both analog and digital PLLs
•  Reference clock period
•  TDC time resolution
•  Digital loop filter transfer function
•  DAC gain

Note that for this example, the total range of the TDC is two reference clock periods.

The equation to make the loop gain of the analog and digital PLLs equal is:
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Since the TDC and the DAC in this example have been configured to have the same number of bits,
this equation reduces to:

Since the function getSOSfromAnalogPLL included in this example produces filter coefficients that

result in a filter gain , the scale factor for the loop filter is .

While the loop filter coefficients, input signal and output signal in this example are all double
precision floating point, it would also be possible to use Fixed-Point Designer™ to model the entire
digital feedback path using exactly the same digital precision as in the circuit design, thus obtaining
even more precise evaluation of impairments such as quantization noise.

You can design and configure the digital loop filter by running the script:

%%%designDigitalLoopFilter;

Compare to Analog PLL

You can compare the loop acquisition of the analog PLL to that of the digital PLL. The additional high
frequency ripple in the analog loop filter response is due to the charge pump waveform.

open('AnalogPLL.slx');
simout = sim(gcs);
apll_vcntl = simout.apll_vcntl;
plotLoopFilterWaveforms;
msblks.PLL.pllTBPlotPhaseNoiseButton([gcs '/PLL Testbench']);
plot(xdpll,ydpll,'LineWidth',2,'DisplayName','Digital PLL');
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DC Featured Examples

• “Effect of Metastability Impairment in Flash ADC” on page 2-2
• “Design and Evaluate Interleaved ADC” on page 2-9
• “Design and Evaluate Successive Approximation ADC Using Stateflow” on page 2-18
• “Analyzing Simple ADC with Impairments” on page 2-26
• “Subranging ADC” on page 2-34
• “Measuring Offset and Gain Errors in ADC” on page 2-45
• “Compare SAR ADC to Ideal ADC” on page 2-49
• “ADC Linearity Measurement Using Histogram” on page 2-52
• “Oversampling Interpolating DAC” on page 2-64
• “Design and Evaluate Segmented DAC” on page 2-69
• “Compare Binary Weighted DAC to Ideal DAC” on page 2-73

2



Effect of Metastability Impairment in Flash ADC
This example shows how to customize a flash Analog to Digital Converter (ADC) by adding the
metastability probability as an impairment. You can measure the metastability probability impairment
to validate your implementation. The example also shows the effect of metastability on the dynamic
performance of the flash ADC. When the digital output from a comparator is ambiguous (neither zero
nor one), the output is defined as metastable. The ambiguous output is expressed as NaN. This
example model uses a MATLAB function block to add the metastability impairment to a flash ADC
architecture. Another subsystem reports the metastability probability on the fly.

Customize Flash ADC

Extract the inner structure of the flash ADC to add customized impairment. Add a Flash ADC block
from the Mixed-Signal Blockset™ library to a Simulink® canvas. Look under the mask to find the flat
structure of the ADC. Copy and paste the complete structure to another new blank canvas.

Delete the Clock Generator block because it is not used to provide the start conversion clock. An
external Stimuli subsystem is used for that purpose. The flash ADC now consists of three major
components:

• Flash ADC Comparators
• Fault Aware Ones Counter
• Output Data Type

Flash ADC Comparators

An N-bit flash ADC uses  comparators in parallel. The Flash ADC Comparators subsystem
itself is based on MATLAB® code. Before the simulation starts, the comparators calculate the
individual reference voltages and store them in a vector. On every specified edge, the input is
compared to the references using MATLAB's ability to compare vectors. This generates thermometer
code similar to the real flash ADC, without the lag from N individual comparator blocks in the model.

To create a 10- bit ADC, set Number of bits (nbits) to 10, Input Range to [-1 1], and INL Vector
to 0. Trigger type is kept at its default value Rising edge.
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Fault Aware Ones Counter

The Fault Aware Ones Counter subsystem implements the impairments in the flash ADC architecture.
Real ADCs handle conversion from thermometer to binary through logic circuits. This subsystem
takes the sum-of-elements of the vector stored by the comparators and applies that sum to a lookup
table to simulate missing codes, otherwise known as bubbles.

Set the Fault Aware Ones Counter parameters: Number of Bits (nbits) to 10, Input Range to [-1
1], and Bubble Codes to []. Trigger type is kept at its default value Rising edge.

Output Data Type

The Output Data Type subsystem handles conversion from the data type at the output of the Fault
Aware Ones Counter to the data type specified on the mask of the Flash ADC.

Break the library link between the Output Data Type block and its reference library. Set Input
dynamic range to [-1 1] and Bipolar data type to double.

Implement Metastability Probability as an Impairment to Flash ADC

To add metastability impairment, place a triggered subsystem with a MATLAB function block after the
Flash ADC Comparators subsystem. The MATLAB function block sets thermometer code signals to
NaNs with a probability from a uniform random number generator. The block resets the signals on the
next relevant edge which is why a triggered subsystem is used. Use this code to implement the
Metastability Impairment subsystem.

%  function y = metastability(u, Probability)
%   mult = ones(size(u));
%   mult(rand(size(u)) < Probability(1)) = NaN; % metastability = NaN
%   y = u .* mult;
%  end

Provide the metastability probability that you want to implement through a constant block connected
to the Probability port.
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Implement Measuring Metastability Probability

To measure metastability impairment, count the number of NaNs encountered and divide that by the
number of total comparator outputs generated during the complete simulation. A simple Simulink
implementation of metastability probability measurement is:

The Inports are:

• ADC output- Receives the output digital code generated by the flash ADC.

• Ready signal- Receives the ready signal which represents the rate at which the digital conversion
is taking place. The digital code gets generated at each rising edge of the signals received by
'Ready signal' port.

Simulation for Metastability Measurement

The model below combines the customized flash ADC with its output connected to the metastability
probability measurement system. In the model, you have a 10-bit flash ADC with metastability
probability of 1e-6 added. The Stimuli subsystem generates an analog signal of 100 Hz and a start
conversion clock with a frequency of 100 MHz. The ADC operates at the rate defined by the start
conversion clock frequency. A dashboard scope provides the behavior of the probability number over
time. A display block shows the current probability being measured by the subsystem. You must run
the simulation for a long enough period to see the probability number settled at the desired value, in
this case 1e-6.

NBits=10;
model1='flashAdc_metastability.slx';
open_system(model1);
open_system([bdroot,'/Scope']);
sim(model1);
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Effect of Metastability on Dynamic Performance of ADC

You can observe the effect of metastability on the dynamic performance of ADCs. The model shows
two setup of flash ADC systems: one with metastability and the other without. A postprocessing block
that takes in the impaired digital output and converts the NaNs to zeros. This is because the digital
output with NaNs cannot be recognized by a spectrum analyzer as valid signal for spectral analysis.
Attach an ADC AC measurement block to observe various performance metrics like SNR, ENOB,
noise floor and so on. The simulation results show the AC analysis causes a significant drop in
performance for ADC with metastability, as shown by the lower ENOB and higher noise floor.
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model2='flashAdc_metastability_Effect.slx';
open_system(model2);
sim(model2);
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See Also
Sampling Clock Source | ADC AC Measurement | Flash ADC

More About
• “Analyzing Simple ADC with Impairments” on page 2-26
• “Compare SAR ADC to Ideal ADC” on page 2-49
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Design and Evaluate Interleaved ADC
This interleaved ADC model highlights some of the typical impairments introduced by data converters
and their effects on a larger system.

Model

In this example, interleave two simple ADCs based on the model “Analyzing Simple ADC with
Impairments” on page 2-26 to create the equivalent of one ADC operating at 2X the individual ADC
sampling rate. Use a two-tone test signal at 200 MHz and 220 MHz as the input to verify the
distortion introduced by the ADC operation.

model = 'interleaved_adc';
open_system(model)
set_param([model '/ADC_1 at 1G SPS'],'jitter','off');
set_param([model '/ADC_1 at 1G SPS'],'nonlinearity','off');
set_param([model '/ADC_1 at 1G SPS'],'quantization','off');

set_param([model '/ADC_2 at 1G SPS'],'jitter','off');
set_param([model '/ADC_2 at 1G SPS'],'nonlinearity','off');
set_param([model '/ADC_2 at 1G SPS'],'quantization','off');

set_param([model '/Offset Delay'],'DelayTime','.5/Fs_adc');
set_param([model '/Two Tone Sine Wave'],'Amplitude','.5');
set_param([model, '/Input Switch'], 'sw', '1');

sim(model)
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To bypass the impairments, use appropriate switch positions inside the ADC blocks. The ADC
behavior is purely ideal. The two ADCs in the top-level model are identical with the exception that the
noise generators in each ADC have different seeds to make the noise uncorrelated.

Each ADC operates at 1 GHz rate, set by the MATLAB® variable Fs_adc defined in the initialization
callback of this model. The operating rate of the ADCs is indicated by the green signals and blocks in
the diagram. The input signal of the second ADC is delayed by an amount equal to half a period of the
ADC sampling frequency.

Timing Imperfection

The precision of the timing between the individual ADCs is critical. To see the effect of a timing
mismatch, open the Offset Delay block and simply add 10 ps to the delay value.

set_param([model '/Offset Delay'],'DelayTime','.5/Fs_adc + 10e-12');

The 10 ps error causes a significant degradation of the ADC performance, even though both ADCs are
perfectly ideal. To compensate for the performance degradation, some form of drift compensation is
necessary. For more information, see SP Devices: spdevices.com/index.php/interleaving

sim(model)
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Effect of Aperture Jitter

Remove the fixed offset of 10 ps and enable the aperture jitter impairment in each of the ADC
subsystems.

set_param([model '/Offset Delay'],'DelayTime','.5/Fs_adc');
set_param([model '/ADC_1 at 1G SPS'],'jitter','on');
set_param([model '/ADC_2 at 1G SPS'],'jitter','on');

The noise around the two-tone test signal at 200 MHz is expected, as a direct result of the ADC jitter.
The additional noise around 800 MHz is the result of interleaving two uncorrelated noise sources.

sim(model)
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Effect of Nonlinearity

Remove the jitter impairment and activate the nonlinearity impairment in both ADCs.

set_param([model '/ADC_1 at 1G SPS'],'jitter','off');
set_param([model '/ADC_2 at 1G SPS'],'jitter','off');
set_param([model '/ADC_1 at 1G SPS'],'nonlinearity','on');
set_param([model '/ADC_2 at 1G SPS'],'nonlinearity','on');

The spectrum now shows 3rd order IMD products around two tones and harmonically related spurs
around the 600 MHz region.

sim(model)
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Even though the ADC nonlinear effects are identical and create exactly the same odd order
components, there is actually some cancellation of terms. If just one nonlinearity is enabled, the
resulting spectrum is worse than when both ADCs are nonlinear.

set_param([model '/ADC_2 at 1G SPS'],'nonlinearity','off');
sim(model)
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Effect of Quantization and Saturation

Remove the linearity impairment and activate the quantization. The quantizer is set to 9 bits, and the
signal level is close to the full scale of +/-1, which can be seen in the input Time Scope.

set_param([model '/ADC_1 at 1G SPS'],'nonlinearity','off');
set_param([model '/ADC_2 at 1G SPS'],'nonlinearity','off');
set_param([model '/ADC_1 at 1G SPS'],'quantization','on');
set_param([model '/ADC_2 at 1G SPS'],'quantization','on');

The spectrum shows the noise floor increasing as an effect of quantization.

sim(model)
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Multiply the two tone test signal by a factor of 1.2. The increased amplitude saturates each ADC,
producing a clipped waveform and a dirty spectrum.

set_param([model '/Two Tone Sine Wave'],'Amplitude','.5*1.2');
sim(model)
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ENOB, SFDR, and Other Single Tone Measurements

ADCs are often characterized by their Effective Number of Bits (ENoB), Spurrious-Free Dynamic
Range (SFDR), and other similar measurements.

These quantities are derived from a single tone test. To change the ADC's input from the Two Tone
Sine Wave source to the Single Tone Sine Wave source and back, double click on the Input Switch.
This test uses a single sine wave with a frequency of 200 MHz.

set_param([model, '/Input Switch'], 'sw', '0');

The ADC AC Measurement block from the Mixed-Signal Blockset™ measures conversion delay,
SINAD (the ratio of signal to noise and distortion), SFDR, SNR (Signal to Noise Ratio), ENOB and the
ADC's output noise floor.

set_param([model, '/ADC AC Measurement'], 'Commented', 'off');

This block requires a rising edge on its start and ready ports for every conversion that the ADC
makes. In this model, these are provided by a 4 GHz pulse generator. To use the ADC AC
Measurement block in this model, uncomment the block by right clicking on it and selecting
"Uncomment" from the menu. The expected ENOB from a dynamic range of 2 and a least significant
bit value (quantization interval) of 2^-8 is 9 bits.

sim(model);
disp(interleaved_adc_output)

           SNR: 316.1774
          SFDR: 58.7451
         SINAD: 58.7451
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          ENOB: 9.4660
    NoiseFloor: -351.8345
      MaxDelay: 0
     MeanDelay: 0
      MinDelay: 0

Copyright 2019 The MathWorks, Inc. All rights reserved.

See Also
ADC AC Measurement

More About
• “Analyzing Simple ADC with Impairments” on page 2-26
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Design and Evaluate Successive Approximation ADC Using
Stateflow

This example shows a 12 bit Successive Approximation Register (SAR) ADC with a circuit-level DAC
model.

Successive Approximation ADCs typically have 12 to 16 bit resolution, and their sampling rates range
from 10 kSamples/sec to 10 MSamples/sec. They tend to cost less and draw less power than
subranging ADCs.

Model

Open the system MSADCSuccessiveApproximation.

model = 'MSADCSuccessiveApproximation';
open_system(model)

Set the switches to their default positions, selecting the two-tone source and the ideal DAC model.

set_param([model '/Source'],'sw','1');
set_param([model '/DAC'],'sw','0');

The top-level model consists ofa testbench and the device under test. The testbench includes the test
signal generators and the time domain scopes and spectrum analyzer for measurement purposes. The
device under test, highlighted in blue in the model, contains a Track and Hold:, a Comparator, control
logic, and charge scaled DAC.

The test signal is either a two-tone sine wave or a constant DC level input. This test signal is sampled
and held at the ADC's output word rate of 10 MHz. The output of the sampler serves as one input to a

2 DC Featured Examples

2-18



comparator. The second comparator input is the DAC output which is an incrementally stepped
reference level. If the output of the sampler is greater than or equal to the DAC output, then the
comparator outputs a logical 1. When this happens, the corresponding bit of the output is set to
logical 1. Otherwise, the comparator outputs a logical 0 which does not increment the ADC output
word. This single comparator is only place in the successive approximation converter where analog is
converted to digital.

sim(model);

Define the number of bits ( NBits ) and ADC conversion rate ( Fs ) in the MATLAB® workspace. The
ADC operating clock rate is determined from Nbits and Fs .

Nbits = 12;
Fs = 1e7;
ADC_clock = Fs*(Nbits+2);

Successive Approximation Control Logic

This model uses Stateflow to model the successive approximation control logic. The state-machine
serves as a sequencer that starts by outputting a count corresponding to midscale which in this case
is 0 volts. The state-machine then performs a binary search of one bit position at a time to find the
count corresponding to the closest approximation to the sampled input signal within 12 bits of
resolution.

open_system([model '/Successive Approximation Logic'],'force')
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On a particular bit, if the comparator outputs a 1, then that bit is set. Otherwise that bit position is
cleared. Because there are 12 bits, it takes 12 clock cycles at the bit rate clock to complete the
conversion for a given input sample.

In this model, the bit rate clock denoted by block labeled ADC Internal Clock runs at 140 MHz. This
clock is 14 times faster than the sample rate clock denoted by the block labeled Conversion Clock in
the upper left corner of the model. After the control logic sequences from bit 11 down to bit 0 the
end-of-conversion (EOC) line goes high, telling the DAC circuitry to reset.

DAC Circuit-Level Implementation

The circuit-level DAC uses a multi-stage charge-scaled array of capacitors in a split-array format. This
architecture provides several advantages including reduced area or parts count, a built-in sample and
hold, low power dissipation, and a relatively small range of capacitance values as would be required
without a split-array.

There are two versions of a digital to analog converter (DAC) in this model, one at the circuit-level
and the second representing ideal DAC behavior. The ideal DAC block takes the input count and
multiplies it by

to generate the output comparison voltage [1].

Set the switch to enable the circuit-level DAC model. Run the model.

set_param([model '/DAC'],'sw','1');
sim(model);
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This particular charge-scaled array uses  binary-weighted capacitors per stage with a

total of  stages providing a total of  bits of DAC resolution. The
binary-weighted capacitors per stage have a value of , , and . The larger the capacitance
corresponds to a higher bit position within a particular stage. For example, setting the low side of the

 capacitor high has 4 times the output voltage impact relative to setting the low side of the 
capacitor high.

If you change the value of the variable Nbits, the physical number of bits of the converter, you need to
modify the circuit level implementation of the DAC. The ideal DAC implementation and the control
logic are parametrized with respect to the number of bits.

open_system([model '/Circuit Level 12 Bit DAC'],'force')
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Each stage is separated by a scaling capacitor with value . The scaling capacitor serves the
purpose of attenuating the output voltage of each stage's output voltage. The further the stage is
from the DAC output node, the more it is attenuated. The attenuation is 8x per scaling capacitor

which corresponds to .

The three MSBs are closest to the output, bits 0, 1, and 2 while there LSBs, bits 10, 11, and 12 are
furthest away. At any given time, the DAC is in one of two modes. It is either generating an output
voltage based on a particular input count or it is being reset when the EOC line goes high. When EOC
goes high, the low side of each capacitor in the DAC is switched to ground rather than data, thus
draining the capacitors of charge in preparation for the next approximation. This effectively drains
the capacitive network of charge preparing it for the next input sample.

Measurement Testbench

The ADC Testbench block from the Mixed-Signal Blockset™ can provide a performance analysis of the
ADC.

In DC mode, the ADC Testbench tests the linearity of the ADC. The test result is used to generate
offset and gain error measurements which are displayed on the block mask. The full test results are
available for export or visualization via the buttons on the ADC Testbench block mask.

bdclose(model);
model = 'MSADCSAR_DC';
open_system(model);
sim(model);
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The AC mode of the ADC Testbench provides insight into the frequency performance of the ADC,
including measurements like the ENoB (Effective Number of Bits), the maximum measured
conversion delay, and the noise floor of the converter. These measurements are displayed on the block
icon after simulation and are available for export via a button on the block mask.

model = 'MSADCSAR_AC';
open_system(model);
set_param([model '/DAC'],'sw','1');

2 DC Featured Examples

2-24



References

1 Haideh Khorramabadi UC Berkeley, Department of Electrical Engineering and Computer
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See Also
ADC AC Measurement | ADC DC Measurement | Sampling Clock Source

More About
• “Compare SAR ADC to Ideal ADC” on page 2-49
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Analyzing Simple ADC with Impairments
This example shows how to implement a basic ADC using a Zero-Order Hold block as a sampler. This
simple ADC highlights some of the typical impairments introduced in an analog-to-digital converters
such as aperture jitter, nonlinearity, quantization, and saturation. This example shows how to
measure the effects of such impairments using a Spectrum Analyzer block and the ADC AC
Measurement block from the Mixed-Signal Blockset™. To better approximate real-world performance,
you can individually enable the impairments in the model.

model = 'MSADCImpairments';
open_system(model)

To observe the behavior of an ideal ADC, bypass the impairments using the switches. Set the Sine
Wave source to generate two tones as an input signal.

set_param([model '/Aperture Jitter'],'sw','1');
set_param([model '/Non Linearity'],'sw','0');
set_param([model '/Quantization and Saturation'],'sw','0');
set_param([model '/Sine Wave'],'Frequency', '2*pi*[47 53]*1e6');

Simulate the model and observe the expected clean output spectrum of the ADC.

sim(model);
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Effect of Aperture Jitter

Set the first switch to the down position. The Variable Delay block delays the signal sample-by-sample
by the amount on its td input. The Noise Source block generates a uniform random variable, which is
low-pass filtered by the Shape the jitter noise spectrum block before it arrives at the td input to the
Variable Delay. Use a shaped uniform noise distribution to represent the jitter. Notice that in this
model, the clock of the ADC is specified in the ideal zero-order hold block, and it is equal to 1/Fs,
where Fs is a MATLAB® variable defined in the model initialization callback and equal to 1.024 GHz.

set_param([model '/Aperture Jitter'],'sw','0');

As expected, the spectrum degrades because of the presence of the jitter.

sim(model);

 Analyzing Simple ADC with Impairments

2-27



Effect of Nonlinearity

Set the second switch to the up position. This enables the ADC nonlinearity. A scaled hyperbolic
tangent function provides nonlinearity. Its scale factor, alpha, determines the amount of nonlinearity
the tanh applies to the signal. By default, alpha is 0.01.

set_param([model '/Non Linearity'],'sw','1');

The spectrum degrades because of the nonlinearity as higher order harmonics get generated.

sim(model);
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Effect of Quantization and Saturation

Set the third switch to the up position enabling the ADC quantization and hard saturation.

set_param([model '/Quantization and Saturation'],'sw','1');

The spectrum degrades because of the quantization effects. The noise floor raises as seen in the
spectrum.

sim(model);
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ADC AC Measurements

Use the ADC AC Measurement block in the Mixed-Signal Blockset™ to measure the noise
performance of the ADC and compute the effective number of bits (ENOB).

Use single sinusoidal tone as input to the ADC to measure other metrics.

bdclose(model);
model = 'MSADCImpairments_AC';
open_system(model);
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Ftest = 33/round(2*pi*2^8)*Fs;
set_param([model '/Sine Wave'],'Frequency', '2*pi*Ftest');

scopecfg = get_param([model '/Spectrum Scope'], 'ScopeConfiguration');
scopecfg.DistortionMeasurements.Algorithm = 'Harmonic';
scopecfg.FFTLength = '512';
scopecfg.WindowLength = '512';

sim(model);

The Aperture Jitter Measurement block from Mixed-Signal Blockset™ measures the average jitter
introduced on the signal to be approximately equal to 1 ps.

Additionally, use the spectrum analyzer to measure:

• Output Third Order Intercept Point (OIP3)
• Signal to Noise Ratio (SNR)
• Total Harmonic Distortion (THD)

Increase the factor alpha to increase the nonlinearity of the ADC and make the effects of nonlinearity
more evident on top of the noise floor. This is just for demonstration purposes.
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alpha = 0.8;

Use a two tone test signal as input to the ADC for the intermodulation measurements.

set_param([model '/Sine Wave'],'Frequency', '2*pi*[50e6 75e6]');

To enable distortion measurements in the spectrum analyzer, click on Distortion Measurement as
in the figure below and select Intermodulation as Distortion type.

scopecfg.DistortionMeasurements.Algorithm = 'Intermodulation';
scopecfg.FFTLength = '4096';
scopecfg.WindowLength = '4096';

sim(model);

The scope allows for the measurement of the third order products adjacent to the input signals, and
determines the output referred third order intercept point.

See Also
ADC AC Measurement | Aperture Jitter Measurement | Sampling Clock Source
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More About
• “Compare SAR ADC to Ideal ADC” on page 2-49
• “Design and Evaluate Interleaved ADC” on page 2-9
• “Subranging ADC” on page 2-34
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Subranging ADC
This example shows how to model a 6-bit Subranging ADC with pipelining and an error correcting
second stage.

Subranging ADCs are typically faster than sigma delta and successive approximation ADCs but
provide less resolution. Typical sample rates are in the 10M sample/sec range, and typical resolution
is 8 to 16 bits. Additional stages and/or bits per stage yield higher resolutions.

Model

The subranging ADC is a two stage data converter. The first stage converter is a 3-bit Flash ADC. It
drives a 3-bit ideal DAC, which in turn drives the second stage. The second stage converter is 4-bit
flash ADC. The extra bit corrects the errors in the first ADC and improves conversion accuracy. The
sampling rate of the ADC is 100 MHz, and is defined in the model initialization callback by MATLAB®
variable Fs.

The model is based on the following Analog Devices tutorial: ADC Architectures V: Pipelined
Subranging ADCs.

The first ADC serves as a coarse 3 bit converter. The quantization error due to the first ADC is itself
quantized by the second ADC. To quantize this error, a 3-bit DAC converts the coarse ADC output to
an analog signal which is subtracted against the original analog input. The difference is the residue
signal. The residue signal is amplified and converted back to a digital signal by the second ADC. The
3 bit ADC output (MSBs) and the 4-bit ADC output (LSBs) are concatenated to form an overall 6 bit
unsigned ADC output.

model = 'subranging_adc';
load_system(model);

set_param(model, 'StopTime', '0.001');
set_param([model '/ADC AC Measurement'], 'Commented', 'off');
set_param([model '/ADC DC Measurement'], 'Commented', 'on');
set_param([model '/Subsystem/Buffer'], 'N', '0.001 * 2 * Fs')
set_param([model '/Time Scope'], 'TimeSpan', '1e-6');
set_param([model '/Time Scope'], 'TimeSpanOverrunAction', 'Scroll');

open_system(model);
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Dynamic Testing

This model uses one of two test sources. Use a sine wave for dynamic testing, e.g. ENoB, SNR, and
SFDR. Use a ramp signal for static testing, e.g. missing codes and nonlinearity quantifiers.

To determine SNR, ENOB and other dynamic characteristics of the subranging ADC, use the ADC AC
Measurement block from the Mixed-Signal Blockset™. Select he correct switch position to use the
Sine Wave as input source.

set_param([model '/Source Select'],'sw','1');
set_param([model '/Sine Wave'], 'Frequency', '2 * pi * 10e6');
set_param([model '/Sine Wave'], 'Amplitude', '0.5');
set_param([model '/Sine Wave'], 'Bias', '0.5');

open_system([model '/Time Scope']);
open_system([model '/Spectrum Analyzer']);
sim(model);
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Add another sine wave to the input to test intermodulation distortion. Observe and measure the
results using the spectrum analyzer.

set_param([model '/Sine Wave'], 'Frequency', '2 * pi * [10, 12] * 1e6');
set_param([model '/Sine Wave'], 'Amplitude', '0.25');
set_param([model '/Sine Wave'], 'Bias', '0.25');

sim(model);
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Missing Code Analysis

This example uses a histogram block to plot the frequency of occurrence of each ADC output code.
Uncomment the histogram by right-clicking on it and selecting Uncomment from the menu. Use the
Ramp block as the input source by setting the input switch to the proper position.

Because there is no need to collect multiple periodograms for DC measurements, change the
simulation time to 1.28e-5 s, then comment out the ADC AC Measurement block and the Spectrum
Analyzer. To collect quantitative data to go with the histogram, uncomment the ADC DC
Measurement block.

set_param([model '/Source Select'],'sw','0');
set_param(model, 'StopTime', '1.28e-5');
set_param([model '/Subsystem/Buffer'], 'N', '1.28e-5 * 2 * Fs')
set_param([model '/ADC AC Measurement'], 'Commented', 'on');
set_param([model '/ADC DC Measurement'], 'Commented', 'off');
w = warning('off', 'msblks:msblksMessages:ADCDataTruncated');
set_param([model '/Time Scope'], 'TimeSpan', '1.28e-5');
set_param([model '/Time Scope'], 'TimeSpanOverrunAction', 'Wrap');

close_system([model '/Spectrum Analyzer']);
open_system([model '/ADC Output Histogram']);
sim(model);
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You can observe how the second stage corrects errors from the first by adding Offset Error and Gain
Error in the impairments tab of the MSB ADC. Any fraction of an LSB introduced as a form of gain or
offset error results in an imbalance or missing code in the ADC output histogram. Anything other
than a flat histogram with a sawtooth input signifies some amount of non-ideal ADC behavior in the
form of integral non-linearity, differential non-linearity, or missing codes.

Errors of up to 1 LSB in the MSB ADC are corrected by the extra bit of the LSB ADC. Larger errors
influence the output.

set_param([model '/MSB ADC'],'OffsetError','0.5');
set_param([model '/MSB ADC'],'GainError','0.3');

sim(model);
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View the results of the ADC DC Measurement block by clicking the Plot measurement results button
in the block mask.
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ADC Testbench

Verify that the results of your tests are due only to properties of the ADC rather than of the input
signals or output processing with the ADC Testbench. Connect the inputs and outputs of the
converter to the inputs and outputs of the ADC Testbench and run the simulation. The results of the
test will show up on the block mask once you run the simulation.

model = 'subranging_adc_testbench';
open_system(model);
warning(w.state, 'msblks:msblksMessages:ADCDataTruncated');
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See Also
ADC AC Measurement | ADC DC Measurement | ADC Testbench | Flash ADC

More About
• “Analyzing Simple ADC with Impairments” on page 2-26
• “Effect of Metastability Impairment in Flash ADC” on page 2-2
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Measuring Offset and Gain Errors in ADC
This example shows how offset error and gain error are calculated and how each affects the transfer
curve of an ADC. Offset error and gain error characterize part of the linearity error in an ADC.

Offset error is the difference between the center of the least significant code and the center of the
same code on an ideal ADC with the same number of bits. Offset error is usually reported in units of
the least significant bit (LSB) of the converter. One LSB is equivalent to the converter's quantization
interval.

Gain error in LSB is the difference between the center of the most significant code after offset error
correction and the center of the same code on an ideal ADC with the same number of bits.

Due to the difficulty in determining the precise location of the center of a code with a non finite
boundary, these values are most commonly measured with respect to the first and last threshold of
the converter, respectively.

Units for Offset Error and Gain Error

The unit , which is used in this example, is defined as:

Thus, an error in  (volts) translates into  as follows:

where  is the full scale range of the ADC and  is the number of bits of the ADC.

Linearity errors are also commonly reported in normalized units with respect to the full scale range:

Another unit sometimes used for linearity errors used is percent full scale. Percent full scale is
defined as normalized units multiplied by 100:

Calculate Offset Error and Gain Error

Use a 3-bit ADC with dynamic range [-1 1]. Define an offset error of 1 LSB and a gain error of 1 LSB.

Nbits = 3;
Range = [-1 1]; % ADC Full Scale Range
OffsetError = 1;
GainError = 1;
LSB = (max(Range) - min(Range)) / (2^Nbits - 1);
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The digital codes from the ideal ADC are identical to those from the experimental ADCs.

[TC0Analog, TC0Digital] = og2tc(Nbits, Range, 0, 0); % Ideal ADC Transfer Curve
TC1Analog = og2tc(Nbits, Range, OffsetError, 0); % Offset Error Only
TC2Analog = og2tc(Nbits, Range, 0, GainError); % Gain Error Only
TC3Analog = og2tc(Nbits, Range, OffsetError, GainError); % Both Offset Error and Gain Error
plotAdcTcForExample(TC0Digital, TC0Analog, TC1Analog, TC2Analog, TC3Analog, Nbits);

The sum of offset error and gain error is known as full-scale error. In monopolar converters zero
error, essentially offset error defined at analog level 0, is identical to regular offset error. In bipolar
converters such as those above, offset error and zero error are different quantities.

Use of Linearity Errors as Impairments

Compare a flash ADC with offset and gain error to one with no impairments.

model = 'OffsetGainExample';
open_system(model);
open_system([model '/Scope']);
sim(model);
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The ADC DC Measurement block confirms the values of the impairments to within a margin of error
determined by the sample rate of the system. The offset error and gain error were both entered as 1
LSB. Offset error was measured as 1.08 LSB and gain error was measured as 0.97 LSB. Errors in
these measurements are due to the converter not sampling exactly at its threshold values. The
maximum expected error in LSB is:

where  is the slope of the input ramp/sawtooth signal in LSB/s, and  is the ADC's conversion start
frequency.

See Also
ADC DC Measurement | Flash ADC
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Compare SAR ADC to Ideal ADC
This example shows a comparison of the SAR ADC from the Mixed-Signal Blockset™ to the ideal ADC
model with impairments presented in “Analyzing Simple ADC with Impairments” on page 2-26.

This model compares SAR ADC and an equivalent ideal ADC model. To scale the integer output of the
SAR ADC to match the floating point output of the ideal ADC, use an output gain and offset. For the
comparison to be valid, both ADCs must sample their inputs and then provide their outputs
concurrently.

The ideal ADC model is composed of a Quantizer block, a saturation block and a Zero-Order Hold
block. The quantization interval is set to be 1 LSB of the SAR ADC. The limits of the saturation block
match the SAR ADC's Input range parameter, [-Vref Vref] / 2. The Zero-Order Hold and both
Sample and Hold blocks sample at Fs, though they do so at differnt times.

The SAR ADC outputs an unsigned, 16-bit integer. The minimum value of the converter's output is 0
and maximum value is 2^ NBits - 1. This is less than the maximum value of the integer as long as the
integer has more bits than the converter. The Bias and Scale Results to Volts blocks scale the former
integer onto the same range as the converter input and the output of the ideal ADC, by default -
Vref / 2 to Vref / 2.

model = 'SARIdealCompare';
open_system(model);

The Time Scope block shows the difference between the two outputs on the left and the two outputs
themselves on the right.

open_system([model '/Time Scope']);
sim(model);
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The Spectrum Analyzer block shows the spectra of the two outputs.

close_system([model '/Time Scope']);
open_system([model '/Spectrum Analyzer']);
sim(model);
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You can substitute the Flash ADC for the SAR ADC in this model to measure its performance.

See Also
Flash ADC | SAR ADC

More About
• “Design and Evaluate Successive Approximation ADC Using Stateflow” on page 2-18
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ADC Linearity Measurement Using Histogram
Statistical measurement of ADC Linearity is popular in physical systems due to its noise tolerance
and relative simplicity of implementation in a physical environment. This example covers problems
inherent to statistical linearity measurements and some possible solutions for implementing these
measurements in Simulink®.

The Model

A histogram-based linearity measurement can be broken into five sections:

1 Stimulus
2 Device Under Test (DUT)
3 Preprocessing
4 Histogram Computation
5 Linearity Measurement

The problems inherent to the statistical method occur primarily in the Stimulus and Preprocessing
sections. The stimulus signal needs to be uniform over the ADC's input to give a flat histogram for an
unimpaired converter, while the preprocessing needs to ensure that exactly one period of the
stimulus is binned by the histogram at a time.

Alternatively, the stimulus frequency can be nonuniform but the histogram must be manipulated
using the PDF of the nonuniform input so as to remove the influence of the nonuniformity on the
result.

s = warning('off', 'Simulink:blocks:DivideByZero');
model = 'histogramLinearityExample';
open_system(model);
set_param([model '/Flash ADC'], 'EnableImp', 'off');

The sawtooth stimulus frequency automatically adapts to different combinations of simulation
runtime and converter number of bits.
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 and  are defined in Range,  is defined in the model parameter StopTime,  is
defined by Fs and  is defined by Nbits.  serves to prevent a frequency of 0 in the
case of a non-finite simulation time. Otherwise, the sawtooth period takes the entire simulation time.

Buffering

In this model, the samples are buffered separately from the histogram computation for two reasons.
First, it is important that the histogram updates at an integer multiple of the stimulus period. This
ensures that the histogram has the correct shape. Second, the number of samples per period of the
sawtooth stimulus is dependant on its frequency and the frequency of the conversion start signal,
which is the sampling frequency. Therefore, the number of samples to buffer is the sample frequency
divided by the sawtooth frequency.

The buffer block causes its own problem while ensuring histogram uniformity. The initial output of the
buffer is passed to the histogram at the start of simulation, effectively a buffer full of zeros all
determined by an initial condition.

model3 = 'histogramInitialCondition';
load_system(model3);
%open_system([model '/Histogram']);
out=sim(model3);
plot(out.ADCHistogram,'-rd');
grid on;
title('Histogram');
ylabel('Amplitude');
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The resulting histogram is corrupted by the massive spike at 0, due to the propagation of the initial
condition.

The MATLAB Function block in the Histogram section keeps the histogram disabled until the next
buffer, the first one filled with simulation data, arrives at the histogram. Therefore, this prevents the
final histogram from being dependent on initial conditions.

open_system(model);
set_param([model '/Flash ADC'], 'EnableImp', 'off');
out=sim(model);
plot(out.ADCHistogram,'-rd');
grid on;
title('Histogram');
ylabel('Amplitude');
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Input Uniformity

A ramp or sawtooth input provides a linear sweep of all of the values over the ADC's dynamic range.

However, due to threshold placement in ADCs, an ideal ADC's transfer curve is not centered in its
dynamic range; the ideal transfer curve is left shifted by 0.5 LSB. Therefore, the first threshold is at
0.5 LSB and the last threshold is 1.5 LSB lower than the maximum dynamic range. Compensate for
this effect by adding a -0.5 LSB bias to the stimulus.

More severe problems occur with converters that have large offset and/or gain errors. Specifically, if
the offset error is lower than -1 LSB or the full scale error (the sum of offset and gain error) exceeds
1 LSB, some codes at the bottom or top of the transfer curve (respectively) will be measured as
missing, regardless of their actual functionality. Knowing this, statistical linearity measurement
techniques should only be applied after offset and gain errors have been corrected.

set_param([model '/Flash ADC'], 'EnableImp', 'on');
set_param([model '/Flash ADC'], 'OffsetError', '3');
set_param([model '/Flash ADC'], 'GainError', '2');
%open_system([model '/Histogram']);
out=sim(model);
plot(out.ADCHistogram,'-rd');
grid on;
title('Histogram');
ylabel('Amplitude');
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To measure the full transfer curve of an ADC with large offset and/or full scale errors in Simulink®,
use the ADC DC Measurement block or the ADC Testbench. Configuration of the stimulus to cover the
whole ADC transfer curve will not effect these blocks' results the way it will effect the histogram.

model2 = 'flashWithTestbench';
open_system(model2);
set_param([model2 '/Flash ADC'], 'EnableImp', 'off');
set_param([model2 '/Flash ADC'], 'OffsetError', '3');
set_param([model2 '/Flash ADC'], 'GainError', '2');
sim(model2);
msblks.ADC.adcDcMeasurementPlot([model2 '/ADC DC Measurement']);
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Linearity Measurement

With the input and preprocessing conditions met, the histogram provides an excellent visual
representation of the linearity of the data converter. A set of mathematical operations applied to this
histogram yield measurements for both DNL and INL.

set_param([model '/Flash ADC'], 'EnableImp', 'on');
set_param([model '/Flash ADC'], 'OffsetError', '0.25');
set_param([model '/Flash ADC'], 'GainError', '0.25');

set_param([model '/Differential Nonlinearity'],'Commented','off');
set_param([model '/Integral Nonlinearity'],'Commented','off');
set_param([model '/Histogram'],'Commented','off');

open_system([model '/Differential Nonlinearity']);
open_system([model '/Integral Nonlinearity']);
open_system([model '/Histogram']);
sim(model);
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open_system([model '/Hist2DNL']);

INL is subsequently computed from DNL.

open_system([model '/DNL2INL']);
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Endpoint INL computed in this manner is equivalent to the endpoint INL computed by the ADC DC
Measurement block, though the ADC DC Measurement block does not report full scale DNL.

open_system(model2);
set_param([model2 '/Flash ADC'], 'EnableImp', 'on');
set_param([model2 '/Flash ADC'], 'OffsetError', '0.25');
set_param([model2 '/Flash ADC'], 'GainError', '0.25');
sim(model2);
msblks.ADC.adcDcMeasurementPlot([model2 '/ADC DC Measurement']);
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warning(s.state, 'Simulink:blocks:DivideByZero');
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Oversampling Interpolating DAC
This example shows how to model a 12-bit Oversampling Interpolating DAC.

Oversampling Interpolating DACs use interpolation to achieve a higher resolution output than
provided on their input. This allows less complicated output filtering for a DSP system operating close
to its Nyquist rate.

Model

The oversampling interpolating DAC has three basic functional blocks. The first block is an FIR
Interpolation filter block from the DSP System Toolbox™ to increase the sample rate from the input
sample rate of Fs to the DAC's sample rate of M * Fs. The second block is a MATLAB Function block
that handles unbuffering the output of the FIR Interpolation block. The MATLAB Function block has a
clock-triggered nature which allows it's output to have jitter. This gives it advantage over the
Unbuffer block from the DSP System Toolbox™. The third block is a Mixed-Signal Blockset™ DAC
operating at M * Fs.

The parameters of the DAC are from the AD9773 datasheet.

The workspace variable parameters:

• Fin = 66.176 kHz is the input signal frequency.
• Fs = 1.125 MHz is the input sample frequency.
• M = 8 is the oversample factor/ratio.
• N = 12 is the number of bits of the DAC.
• Ref = 1.2 is the reference (dynamic output range) of the DAC.

The DAC sample frequency is determined by the oversample factor and the input sample frequency:

For simplicity, Offset error and Gain error have been left at 0 %FS in this model.

model = 'InterpolatingDAC';
open_system(model);
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Dynamic Testing

To determine SNR, ENOB and other dynamic characteristics of the interpolating DAC, use the DAC
AC Measurement block from the Mixed-Signal Blockset™.

Use the Spectrum Analyzer to compare the low-sample rate input to the output of the oversampled
interpolating DAC. The gain block next to the Spectrum Analyzer matches the input wave to the
amplitude of the DAC's output for side-by-side comparison.

open_system([model '/Spectrum Analyzer']);
sim(model);
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Static Testing

To determine offset error, gain error, INL and DNL use the DAC DC Measurement block. Set the
Offset error of the Binary Weighted DAC to -0.02 %FS (-0.8192 LSB) and set its the Gain error to
1.0 %FS (40.96 LSB).

bdclose(model);
model = 'InterpolatingDACDC';
open_system(model);
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A summary of the measurements is reported on the block icon. Open the block mask and press the
Plot button to view the full INL and DNL plots.

sim(model);
mask = Simulink.Mask.get([model '/DAC DC Measurement']);
button = mask.getDialogControl('PlotBtn');
eval(regexprep(button.Callback, 'gcb',['"' model '/DAC DC Measurement"']));
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Design and Evaluate Segmented DAC
This example shows how to design and evaluate a segmented DAC using reference architecture and
validate the DAC using the DAC Testbench. For this example, use the datasheet of AD9775. This is a
commercial, off-the-shelf 14-bit DAC from Analog Devices.

Set Up Segmented DAC Testbench Model

Open the model SegmentedDACTestbench attached to this example as a supporting file. The model
consists of a Segmented DAC block and a DAC Testbench.

model = 'SegmentedDacTestbench';
open_system(model);

Segmented DAC Block

The Segmented DAC block is composed of a number of segments, wired in parallel. These segments
are each fed by a subset of the input data word. The results of the conversions from each segment
DAC are summed to get the output for the full input word.

open_system([model '/Segmented DAC'], 'force');
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The Logical Vector Conversion block splits the input word into its component bits. Inside each
segment a Selector block picks the subset of the input word for that segment and another Logical
Vector Conversion block converts it back to a scalar value for the segment DAC to convert. The
individual segment DACs are Binary Weighted DAC blocks. Their parameter settings are set during
model initialization by the Segmented DAC block. Finally, the segments' outputs are added and scaled
to the reference of the Segmented DAC block.

Double click the Segmented DAC block to open the Block Parameters dialog box. Use the table in the
center to set parameters of individual segments of the DAC. The effects of the table parameters on
the overall operation of the DAC are summarized in the bottom right corner.

The Input polarity is set Unipolar, the Reference (V) is set to 1.20 V , the Bias (V) is set to 0 V,
the Settling time (s) is set to 11e-9 s, and the Settling time tolerance (LSB) is set to 0.025 LSB
based on the datasheet.

In the Segment settings table insert a row to have three rows to define a three-segment DAC
architecture. Set the Bits of the top and bottom rows to 5 and the Bits of the middle row to 4. This
sets the LSB segment (specified by the top row) and the MSB segment (specified by the bottom row)
to each be a 5-bit DAC while the middle segment is a 4-bit DAC. Set the Offset error and Gain Error
fields for all segments to 0. Click anywhere in a row or Shift+Click on multiple rows in the table to
select them. When a row is selected, use the buttons on the right side of the table to move it up or
down in the table changing where its segment is in relation to the input word. The top row's segment
always converts the LSB and the bottom segment always converts the MSB. Use the buttons below
the table to add or remove segments.
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Measure DC Performance Metrics Using Endpoint Method

Double click the DAC Testbench block to open the Block Parameters dialog box. The Measurement
option is selected as DC. Set the Start conversion frequency (Hz) to 9e6 Hz. In the Setup tab,
click the Autofill setup parameters button to automatically propagate the DAC parameters to the
testbench. Set the Settling time (s) to 21e-9 s to ensure the DC measurement results are not even
partially based on the transitions between codes. In the Target Metric tab, click the Autofill target
metric button to automatically propagate the DAC target metrics to the testbench. Apply the
changes. Set the Recommended min simulation stop time (s) as model stop time by clicking the
Set as model stop time button.

Run the simulation for 36.41 ms.

bdclose(model);
sim(model);

The measured offset and gain errors displayed on the icon of the DAC Testbench are within the Error
tolerance (LSB) of their expected values.

Double click the DAC Testbench block to open the Block Parameters dialog box. Click the Plot DC
analysis results button to view the DAC transfer curve, endpoint nonlinearity and best fit
nonlinearity.
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Measure AC Performance Metrics Using a Single Tone

Double click the DAC Testbench block to open the Block Parameters dialog box. Set the
Measurement option as AC . In the Stimulus tab, Start conversion frequency (Hz) is set to 9e6
Hz to allow the DAC's output to settle between conversions. In the Setup tab, click the Autofill
setup parameters button to automatically propagate the DAC parameters to the testbench. Apply
the changes. Set the Recommended min simulation stop time (s) as model stop time by clicking
the Set as model stop time button.

set_param([model '/DAC Testbench'], 'MeasureOption', 'AC');

Open the Segmented DAC block parameters dialog and set the Offset error and Gain error entries
in the Segment settings table to 0 for all segments. This prevents the linearity impairments from
affecting harmonic performance.

mask = Simulink.Mask.get([model '/Segmented DAC']);
paramSegmentSettings = mask.getParameter('SegmentSettings');
ctrlSegmentSettings = paramSegmentSettings.DialogControl;
ctrlSegmentSettings.setTableCell([1, 3], 'Value', '0');
ctrlSegmentSettings.setTableCell([2, 3], 'Value', '0');
ctrlSegmentSettings.setTableCell([3, 3], 'Value', '0');
ctrlSegmentSettings.setTableCell([1, 5], 'Value', '0');
ctrlSegmentSettings.setTableCell([2, 5], 'Value', '0');
ctrlSegmentSettings.setTableCell([3, 5], 'Value', '0');

Run the simulation for 180 ms.

set_param(model, 'StopTime', '0.18');
sim(model);

Warning: The file containing block diagram '<a href="matlab:open_system
('msbUtilities')">msbUtilities</a>' is shadowed by a file of the same name
higher on the MATLAB path. This can cause unexpected behavior. For more
information see <a href="matlab:helpview([docroot
'/toolbox/simulink/helptargets.map'], 'shadowing')">"Avoiding Problems with
Shadowed Files"</a> in the Simulink documentation.

The file containing the block diagram is:
S:\22\jadams.Brf.DacExamples\matlab\toolbox\msblks\msblks\internal\msbUtilities.slx.
The file higher on the MATLAB path is:
S:\22\jadams.Brf.DacExamples\matlab\toolbox\msblks\msblks\msbUtilities.slx 

The harmonic distortion measurements are displayed on the icon of the DAC Testbench.
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Compare Binary Weighted DAC to Ideal DAC
This example shows a comparison of the Binary Weighted DAC from the Mixed-Signal Blockset™ to
an ideal DAC model.

This model compares the Binary Weighted DAC and an equivalent ideal DAC model. For the
comparison to be valid, both DACs must sample their inputs concurrently. The parameters (reference,
bias, sampling frequency, number of bits) of both the Binary Weighted DAC and the ideal DAC are
derived from the TLC5615 datasheet.

The ideal DAC model is composed of a Sample and Hold block, Gain block, Bias block and Data Type
Conversion block. The Sample and Hold ensures input data enters the DAC at the correct rate (Fs)
even if the digital input signal was sampled at some other rate. The Gain block scales the digital word
to an analog scale and the Bias block applies a bias to match the output of the Binary Weighted DAC.
The Binary Weighted DAC uses its reference parameter as its full scale output range, thereby making
its throughput gain equivalent to Ref / (2^NBits - 1). The Data Type Conversion block ensures
the output data type matches the Binary Weighted DAC.

The Binary Weighted DAC outputs a scalar double. The outputs of both the Binary Weighted DAC and
the ideal DAC produce values on the interval [-Ref, Ref - 1 LSB] / 2.

model = 'BinDacIdealCompare';
open_system(model);

The Scope block shows the difference between the two outputs on the left and the two outputs
themselves on the right.

open_system([model '/Scope']);
sim(model);
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The Spectrum Analyzer shows the spectra of the two outputs. The Spectrum Analyzer requires fixed-
step sampled inputs, which the Zero-Order Hold blocks perform at the same rate that the DAC
performs conversions, Fs.

close_system([model '/Scope']);
open_system([model '/Spectrum Analyzer']);
sim(model);
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Digital Timing Using Solutions to Ordinary Differential
Equations

This example shows how to model a three stage ring oscillator using models defined by ordinary
differential equations (ODE).

This example is the third of three examples that use a three stage ring oscillator model to explore the
range of options for simulating the analog applications of digital circuits. The delays in each stage
determine the ring oscillator's output frequency, making the accurate modeling of these delays
essential to the simulation of the circuit.

The first two examples in the sequence, “Logic Timing Simulation” on page 3-10 and “Digital Timing
Using Fixed Step Sampling” on page 3-6, contain background information about this example.
Read them first, in sequence, if you have not already done so.

This model uses blocks defined by ODEs, and depends on the services of an ODE solver. For each
stage, the zero crossing detection capabilities of a Compare To Constant block are used to produce a
saturated input to the inverter. The inverter output is converted from Boolean to double to drive a
Transfer Function block. The Transfer Function block defines the shape of the inverter output
transitions.

Load the ODE-based model and update the model to display sample times.

open_system('OdeWaveform');
set_param(gcs,'SimulationCommand','update');

Continuous Time Model Using Exponential Decay

In this section, use a single pole response to evaluate the ring oscillator output when the inverter
output is modeled as the response of an RC circuit.

For this section, the Transfer Function blocks are configured for a single pole response. The pole for
one of the logic stages is set to a slightly different value than for the other two stages so that the
model will enter the correct mode of oscillation.
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The solver selection is set to auto, with a Relative Tolerance of 1e-9.

Run the ODE-based model with the single pole rise/fall response.

sim('OdeWaveform');

Continuous Time Model with Nearly Constant Slew Rate

In this section, model the response of the ring oscillator stages using a continuous time Transfer
Function block with a fourth order Bessel-Thompson response to approximate a constant slew rate
response.

Set the configuration for the fourth order Bessel-Thompson rise/fall response.

den = getBesselDenominator(3e9);
set_param('OdeWaveform/Transfer Fcn','Denominator',mat2str(den));
set_param('OdeWaveform/Transfer Fcn1','Denominator',mat2str(den));
den = getBesselDenominator(3.1e9);
set_param('OdeWaveform/Transfer Fcn2','Denominator',mat2str(den));

Run the modified ODE-based model. Note the slight rounding of the onset of the switching edges,
similar to the waveforms produced in the “Digital Timing Using Fixed Step Sampling” on page 3-6
example.

sim('OdeWaveform');
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Continuous Time with Solver in Auto Mode

In this section, change the solver configuration and observe the change in results.

For circuits which are adequately described by linear, time invariant models, the combination of fixed
step and variable step discrete sample times, as described in the Combined Fixed Step and Digital
Timing section may be the simplest way to get reliable results. However, for circuits which must be
modeled by a nonlinear or time-varying model, the ODE-based solution is the only viable option. In
such cases, you should vary the maximum error tolerance, maximum step size or choice of solver in
the solver configuration dialog and compare the results to the behavior you expect.

Maintain the model configuration of the previous section but change the solver's Relative Tolerance
from 1e-9 to auto.

set_param('OdeWaveform','RelTol','auto');

Run the model with the auto solver setting. Observe both the change in period of oscillation and in
wave shape.

sim('OdeWaveform');
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See Also

More About
• “Logic Timing Simulation” on page 3-10
• “Digital Timing Using Fixed Step Sampling” on page 3-6
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Digital Timing Using Fixed Step Sampling
This example shows how to model a three stage ring oscillator using a combination of fixed step and
variable step discrete sample times.

This example is the second of three examples that uses a three stage ring oscillator model to explore
the range of options for simulating the analog applications of digital circuits. The delays in each stage
determine the ring oscillator's output frequency, making the accurate modeling of these delays
essential to the simulation of the circuit.

The first example in the sequence, “Logic Timing Simulation” on page 3-10 contains background
information about this example. First read that example if you have not already done so. After
completing this example, you can move forward with the “Digital Timing Using Solutions to Ordinary
Differential Equations” on page 3-2 example.

For each stage of the ring oscillator, the Logic Decision block converts the input into a saturated
variable step discrete signal and the Slew Rate block converts the output to an analog fixed step
discrete signal. Some delay in the Logic Decision block is unavoidable; however most of the delay is
introduced by the Slew Rate block.

The Logic Decision block generates a variable step discrete sample at its output in response to any
threshold crossing it detects at its input.

For a fixed step discrete input sample time, the threshold crossing time is determined by linear
interpolation between the two most recent samples. The output sample is delayed by one sample
because the block does not have access to the fixed in minor step services of an ODE solver. In the
modeling of a circuit, this delay must represent either the delay of input stages in a multi-stage
transistor circuit or RC transmission line routing delay.

For a fixed step input, the precision of the threshold crossing time reported by the Logic Decision
block depends on the ratio of the spectral content of the signal to the Nyquist frequency defined by
sample rate. For a sine wave at 0.25 times the Nyquist frequency (8x oversampling), the maximum
error in the reported threshold crossing time is 1% of a sample interval. For 0.1 times the Nyquist
frequency, the maximum error is 0.15% of a sample interval. For applications requiring greater
precision, such as evaluating low level phase noise at the output of a PLL, an approach that depends
only on variable step sampling may produce more precise results.

For a variable step input, the output of the Logic Decision block is delayed by the minimum delay
parameter for the block.

The Slew Rate block implements a linear time invariant transfer function that can be applied to either
a variable step or fixed step input signal, producing a fixed step discrete output signal with a sample
time that was set by the Slew Rate block. The delay of the Slew Rate block is a mixture of:

• Constant delay such as might occur in a multi-stage transistor circuit or RC routing delay
• Nearly constant slew rate such as would be typical of a saturated transistor driving a capacitive

load
• Exponential decay such as would be typical of an RC circuit

Load the mixed analog/digital model and update the model to display sample times.

open_system('AnalogWaveform');
set_param(gcs,'SimulationCommand','update');
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Slew Rate Block in Default Sampling Mode

In this section, use the Default sampling mode of the Slew Rate block to model the response of a
circuit whose slew rate is nearly constant, such a saturated transistor driving a capacitive load.

For this section, the Slew Rate blocks are configured to their Default sampling mode, which
maximizes the portion of the delay due to nearly constant slew rate (saturated transistor) and
minimizes the delay due to constant delay or exponential decay.

The delay for one logic stage is set to a slightly different value than for the other stages so that the
model enters the correct mode of oscillation.

Since the model contains no differential equations, the solver is Variable Step Discrete.

Note in the response that the onset of the switching edges is slightly rounded. In a real circuit, this
would typically be due to the RC response of the routing.

Run the mixed analog/digital model with default sample times.

sim('AnalogWaveform');
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Slew Rate Block in Advanced Sampling Mode

In this section, use the Advanced sampling mode of the Slew Rate block to model circuits whose
response is primarily a decaying exponential.

Choose the Advanced mode for the Slew Rate block sampling and set the Maximum frequency of
interest to a value that is high enough to make the delay of the Slew Rate block due primarily to
exponential decay. This choice also minimizes the delay of the Logic Decision block.

Note in the response that the onset of the switching edges is relatively sharp.

Configure the mixed analog/digital model to approximate single pole response.

% Slew Rate1
set_param('AnalogWaveform/Slew Rate1','DefaultOrAdvanced','Advanced');
set_param('AnalogWaveform/Slew Rate1','MaxFreqInterest','20e9');
set_param('AnalogWaveform/Slew Rate1','RisePropDelay','92e-12');
set_param('AnalogWaveform/Slew Rate1','RiseTime','15.5e-11');
% Slew Rate2
set_param('AnalogWaveform/Slew Rate2','DefaultOrAdvanced','Advanced');
set_param('AnalogWaveform/Slew Rate2','MaxFreqInterest','20e9');
set_param('AnalogWaveform/Slew Rate2','RisePropDelay','92e-12');
set_param('AnalogWaveform/Slew Rate2','RiseTime','15.5e-11');
% Slew Rate3
set_param('AnalogWaveform/Slew Rate3','DefaultOrAdvanced','Advanced');
set_param('AnalogWaveform/Slew Rate3','MaxFreqInterest','20e9');
set_param('AnalogWaveform/Slew Rate3','RisePropDelay','95e-12');
set_param('AnalogWaveform/Slew Rate3','RiseTime','16e-11');

Update the diagram to show the revised sample times in the sample time legend.
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set_param(gcs,'SimulationCommand','update');

Run he mixed analog/digital model with emphasized one pole response.

sim('AnalogWaveform');

See Also
Logic Decision | Slew Rate

More About
• “Logic Timing Simulation” on page 3-10
• “Digital Timing Using Solutions to Ordinary Differential Equations” on page 3-2
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Logic Timing Simulation
This example shows how to use the Variable Pulse Delay block to create accurate timing models of
logic circuits.

This example is the first of three examples that use a three stage ring oscillator model to explore the
range of options for simulating the analog applications of digital circuits. The delays in each stage
determine the ring oscillator's output frequency, making the accurate modeling of these delays
essential to the simulation of the circuit. This first example shows how to produce digital waveforms
with accurate timing by using variable step discrete sampling.

The second and third examples both show how to produce analog waveforms with accurate shape and
timing. The “Digital Timing Using Fixed Step Sampling” on page 3-6 example shows how to model the
three stage ring oscillator using a combination of fixed step and variable step discrete sample times.
The “Digital Timing Using Solutions to Ordinary Differential Equations” on page 3-2 shows modelling
the three stage ring oscillator using models defined by ordinary differential equations (ODE). You
should study this example before studying the other two.

The delays in this model are introduced by the Variable Pulse Delay blocks from the Utilities library of
the Mixed-Signal Blockset™, with the delay defined by a separate input to the block. The initial
output values for the Variable Pulse Delay blocks are set to guarantee oscillation. The initial output
values for two of the blocks are kept at the default value of zero while the initial output for the third
block is set to one.

The oscilloscope is configured to display the samples as a scatter graph, with no rendering between
samples. Different sample times make different assumptions about the signal value between samples
such as:

• Zero Order Hold (ZOH) — The signal value is assumed to equal the value of the most recent
sample.

• First Order Hold (FOH) — The signal value is assumed to vary linearly from one sample to the
next.

• Nyquist limited — The signal is assumed to have zero spectral content above a frequency equal to
one half of a fixed sample rate.

• Taylor series — For each major sample step, an ODE solver produces a polynomial that
approximates the signal value over that time interval.

The oscilloscope block bases its rendering on these assumptions. You must focus on the samples
themselves and understand explicitly the assumptions that different sample times make.

The samples displayed on the oscilloscope show a single sample for each logic switching event. These
samples are generated by the Variable Pulse Delay blocks. Every time a Variable Pulse Delay block
receives a sample, it generates a new event at a time equal to the sample time plus the value at the
delay input port.

As indicated by the sample time color coding, the output sample time for the inverters is Fixed In
Minor Step (FIM). This means that each inverter produces an output sample value for every major
sample time in the model, regardless whether or not that sample time is used at an input port of the
gate.

This FIM behavior is typical of most logic blocks; however you should pay special attention to sample
time propagation in triggered subsystems such as D flip-flops. If the trigger input uses a fixed step
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discrete sample time, then any input which is not synchronous with that sample time may not be
processed correctly. The triggered subsystem can be forced to operate in FIM mode by triggering it
with a variable step discrete trigger such as would be produced by the Variable Pulse Delay block or
the Logic Decision.

Since the model does not contain any differential equations, the solver is Variable Step Discrete.

The Stage Delay is set to 100 ps, resulting in a half period of precisely 300 ps and a period of 600
ps, as demonstrated in the simulation output.

Load the logic timing model and update the model to display sample times.

open_system('LogicTiming');
set_param(gcs,'SimulationCommand','update');

Run the logic timing model.

%%.
sim('LogicTiming');
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See Also
Variable Pulse Delay

More About
• “Digital Timing Using Fixed Step Sampling” on page 3-6
• “Digital Timing Using Solutions to Ordinary Differential Equations” on page 3-2
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Circuit Design Details Affect PLL Performance
This example shows how to use the Linear Circuit Wizard block to evaluate the effect of loop filter
circuit design details on the performance of a phase-locked loop.

Analog circuit imperfections such as circuit element limitations, element value variations, layout
parasitics, and device noise can all measurably affect system-level performance. To release a system
design for production, you need to evaluate the effects of these analog circuit design details to
confirm that the manufactured system meets its performance requirements. For linear, time-invariant
analog circuits, the Linear Circuit Wizard block can help by directly solving the detailed circuit
equations and packaging the solution in the form of behavioral blocks that will execute efficiently in a
Simulink® model.

Open the model PllAnalogCircuitExample attached to this example.
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The model defines an integer-N single modulus PLL using the basic building blocks from Mixed-
Signal Blockset™. The loop filter for the PLL is designed using the Linear Circuit Wizard block. For
more information on the PLL model, see “Phase Noise at PLL Output” on page 1-2.

The PLL Testbench supplies a reference input signal for the PLL. This reference signal is modulated
by a PRBS6 phase modulation that is used to measure the closed loop phase noise transfer function of
the PLL. The input spectrum is evaluated by a spectrum estimator.

The output spectrum is measured both by the PLL Testbench and by a spectrum estimator like the
one used to measure the input spectrum.

The model includes an oscilloscope to measure the PLL loop lock time.

Initial System Design

The chosen loop filter design is a third order passive loop filter, R2 = 1.33 kΩ, R3 = 17 kΩ, C1 =
13.1 pF, C2 = 144 pF, and C3 = 0.941 pF [1].
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The other primary loop design parameters are:

• Reference frequency: 30 MHz
• Prescaler divider ratio: 70
• VCO sensitivity: 100 MHz/V
• Charge pump output current: 1 mA

The primary circuit impairments are:

• VCO phase noise
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• Charge pump imbalance: 0.1 mA
• Charge pump leakage: 0.01 mA
• Reference PRBS6 modulation peak level: -60 dBc/Hz

To create the loop filter block, start by creating or obtaining a SPICE netlist description of the circuit.
This example uses a third order passive loop filter defined in the SPICE netlist file
3rdOrderLoopFilter.sp. This netlist includes the independent current source Icp to define a
current input port and a .print statement to define a voltage output port.

* Third order passive loop filter
* for preliminary system definition
Icp N1 0
C1 N1 0 13.1p
R2 N1 N2 1.33k
C2 N2 0 144p
R3 N1 N3 17k
C3 N3 0 0.941p
.print V(n3 0)

In the Linear Circuit Wizard block parameters dialog box, set the Circuit design name to '3rd
Order Passive', Block name to 'loop filter', and Netlist file name to
'3rdOrderLoopFilter.sp'. Click the Parse netlist file and redefine ports button.

The Port Definition and Device Noise Generators tabs become visible after the netlist has been
parsed. Review the content of the Port Definition tab to confirm that the port definitions are correct.

Click the Plot transfer functions button and review the resulting plot.
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Click the Build/modify block button and connect the resulting loop filter block between the output
of the charge pump and the VCO control voltage.

In the configuration of this model, the charge pump impairments are activated. Therefore, the charge
pump defines a fixed step discrete sample time to drive the loop filter. Enabling the impairments also
provides the level of detail needed in the later stages of development, at the cost of increased
simulation run time. If the charge pump impairments are disabled, then the loop filter can be
configured to provide its own sample time. However, a lowpass resampler, such as that used in the
loop filter block in the “Building Blocks” library, is required to convert from the variable step discrete
sample time of the charge pump without impairments to the fixed step discrete sample time of the
loop filter.

Run the simulation.
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To plot the PLL output spectrum, you can use the plotPllOutputSpectrum helper script attached
to this example. The resulting figures highlight the spurious responses at 30 MHz intervals due to the
charge pump imbalance, and the output spectrum due to the reference phase modulation. You can
create simulations that highlight other effects by modifying the level of these and other impairments.
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Add Device Noise

Add to the simulation the effect of device noise in the loop filter.

Enable and control the addition of device noise to the PLL model using the Device Noise
Generators tab in the Linear Circuit Wizard block parameters dialog box. For Circuit Element R2
and R3, select Enable device noise generator and set the Corner frequency (Hz) to 10000 to
include a flicker noise corner frequency of 10 kHz.

As soon as you change the definition of the block, for example by enabling device noise, the block
mask displays a warning message indicating that the generated block does not reflect the latest
changes. Apply the latest changes to the generated loop filter block by clicking the Build/modify
block button. The warning message is removed and the block now includes the addition of the device
noise.

Click the Plot transfer functions button. The transfer functions now include the transfer function
from each device noise source to the output of the loop filter.

3 Mixing Analog and Digital Signals Featured Examples

3-20



Re-run the simulation to include the effect of device noise in the results. To get a clearer evaluation of
the effect of the device noise, set the charge pump current impairments to zero while leaving the
charge pump impairments enabled, and disable the VCO phase noise. However if you do so, then set
the charge pump impairments back to their original value and enable the VCO phase noise for the
later sections of this example.

Practical Circuit Design

Detailed circuit designs that include the effects of circuit element limitations and layout parasitics
typically only become available late in the development of a product. At that time, you should
incorporate the detailed circuit design of critical components into the system model to confirm that
the as-designed system is ready for production.

As a simple example of the types of circuit effects that should be included in the detailed as-designed
model, add a charge pump output impedance of 10 kΩ and a VCO control voltage input impedance of
100 kΩ to the third order passive filter model.
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The associated SPICE netlist, as supplied in the file 3rdOrderCPLoading.sp is:

* Third order passive loop filter
* with charge pump output impedance
Icp N1 0
Rs N1 0 10k
C1 N1 0 13.1p
R2 N1 N2 1.33k
C2 N2 0 144p
R3 N1 N3 17k
C3 N3 0 0.941p
R1 N3 0 100k
.print V(N3 0)

This schematic and netlist also illustrate an important principle when multiple circuit blocks are to be
cascaded. You can cascade multiple linear circuit blocks created by the Linear Circuit Wizard block.
The accuracy of your result depends on the accuracy of the modeling of circuit loading at both the
input and output of each circuit block.

To evaluate the effect of loop filter circuit loading, change Netlist file name to
'3rdOrderCPLoading.sp' in the Linear Circuit Wizard parameters dialog box and click the Build/
modify block button.

Plot the resulting transfer functions.
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Re-run the simulation to include the effect of circuit design details in the results.

The shape of the loop acquisition response has changed. There are more cycle slips during loop
acquisition, but much less overshoot. The resulting lock time remains approximately the same as the
lock time for the initial system design. Further, there is significantly more noise in the steady state
loop filter output, and the additional noise appears to have a more or less constant amplitude.
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Plot the PLL output spectrum using the plotPllOutputSpectrum helper script. The primary impact
of the circuit loading is a substantial increase in the spurious responses.
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Enhanced Circuit Design

In this loop filter design, the last RC section of the loop filter with loading is replaced by a Sallen and
Keye active filter. This circuit design introduces a pair of resonant poles with a modest Q factor.

The associated netlist, as supplied in the file 4thOrderActiveFilter.sp, is:

* Fourth order loop filter with Sallen and Keye output section
Icp N1 0 1e-3
Rs N1 0 10k
C1 N1 0 13.1p
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R2 N1 N2 1.33k
C2 N2 0 144p
R3 N1 N4 17k
C3 N4 N3 0.941p
R4 N4 N5 17k
C4 N5 0 0.941p
E1 N3 0 LAPLACE N5 N3 6.3e7/6.3e4 1
.PRINT V(N3)

The operational amplifier in this circuit is represented as a voltage controlled voltage source. The
open loop response of this amplifier is modeled using the LAPLACE keyword and the expression "
6.3e7/6.3e7 1 ". This expression describes a rational transfer function with a numerator equal to
6.3e7 and the denominator (s+6.3e4). In other words, the amplifier has an open loop DC gain of
1000 and a pole at 10 kHz. This syntax can readily describe transfer functions with more poles and
zeros.

In the Linear Circuit Wizard block parameters dialog box, set Circuit design name to '4th Order
Active' and Netlist file name to '4thOrderActiveFilter.sp'.

Plot the transfer functions. Although the low frequency response closely resembles the response of
the passive filter with loading, the high frequency response rolls off much more rapidly.

Click the Build/modify block button. The text on the block icon changes to match the revised circuit
design name.
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Re-run the simulation to evaluate the effect of the active loop filter on the PLL system performance.
The loop acquisition response is similar to those for the other cases studied but the loop filter output
is much smoother.

Plot the PLL output spectrum using the plotPllOutputSpectrum helper script. The output
spectrum reflects the improvements to the system performance. Specifically, the out-of-band spurious
responses are dramatically reduced and the in-band response remains essentially unchanged.
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Analyze T-Coil Circuit
This example shows how to use the Linear Circuit Wizard block to analyze a T-coil impedance
matching circuit and generate S-parameter data from the result.

The T-coil circuit is used in many applications to impedance match a capacitive load, such as an
electrostatic discharge (ESD) protection device, over as broad a frequency band as possible [1], [2].
You need to include the effects of a T-coil circuit in the model of any broadband or microwave channel
that uses it. Depending on the application, you may insert the transfer function of the circuit into a
model of the channel or insert the S-parameters of the circuit into the RF analysis of the channel.

This example analyzes the T-coil circuit shown in this schematic diagram. Capacitor Ce is the
capacitor to be impedance matched [3]. The schematic includes the equivalent circuits for two S-
parameter ports. For more about S-parameter ports, see the S-Parameters section of the example.

The file TCoil.sp contains the SPICE netlist for the T-coil circuit.

* SPICE netlist for T-coil example
* The circuit itself
Ra 2 3 4
La 3 4 360e-12
Cb 2 6 15e-15
Kab La Lb 0.4
Ce 4 0 300e-15
Lb 4 5 240e-12
Rb 5 6 2
* Create an S-parameter port by driving with a voltage source
* and load resistor, and then measure the voltage and current
* at the circuit end of the load resistor.
*
* Port 1 definition
V1 1 0
R1 1 2 50
.print V(2 0) I(V1)
* Port 2 definition
V2 7 0
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R2 6 7 50
.print V(6 0) I(V2)
.end

Open the TCoil model. The model contains the Linear Circuit Wizard that you can use to create
Linear Circuit blocks for the T-coil circuit and a baseline circuit without impedance matching. The
model also contains a test setup used to compare the pulse response of the T-coil circuit to the
baseline circuit.

open_system('TCoil.slx');
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Select the Linear Circuit Wizard block. In the block mask or the Property Inspector, set the Circuit
design name to 'T-Coil', the Block name to 'with T-coil', and the Netlist file name to
'TCoil.sp'.

Parse the SPICE netlist for the T-coil circuit by clicking the Parse netlist file and redefine ports
button. The Port Definition and Device Noise Generators tabs become visible in the block
parameter dialog box. If desired, review the port settings and device noise settings.

Display the frequency response of the T-coil circuit by clicking the Plot transfer functions button.
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Build a Linear Circuit block for the T-coil circuit by clicking the Build/modify block button. Connect
the block into the lower channel in the model. The active input port is V1 and the active output port
is Vprint3.
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This example compares the T-coil circuit against a baseline circuit without impedance matching. The
baseline circuit is a shunt capacitor connected to two S-parameter ports. The file NoTCoil.sp
contains the SPICE netlist for this circuit.

* SPICE netlist for T-coil example
* The load parasitic capacitance without matching circuit
Ce 4 0 300e-15

* Create an S-parameter port by driving with a voltage source
* and load resistor, and then measure the voltage and current
* at the circuit end of the load resistor.
*
* Port 1 definition
V1 1 0
R1 1 4 50
.print V(4 0) I(V1)
* Port 2 definition
V2 7 0
R2 4 7 50
.print V(4 0) I(V2)
.end

Return to the Linear Circuit Wizard block. In the block mask or the Property Inspector, set the
Circuit design name to 'Shunt C', the Block name to 'no T-coil', and the Netlist file name
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to 'NoTCoil.sp'. Parse the netlist for the shunt capacitor circuit by clicking the Parse netlist and
redefine ports button.

Display the frequency response of the shunt capacitor circuit by clicking the Plot transfer functions
button. The response of the shunt capacitor falls off much faster at high frequencies than the
response of the T-coil circuit.

Build a Linear Circuit block for the shunt capacitor by clicking the Build/modify block button.
Connect this block into the upper channel in the model. The active input port is V1 and the active
output port is Vprint3.
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Run the simulation. In this scope display, the yellow trace is the pulse response of the shunt capacitor
without impedance matching and the blue trace is the pulse response of the T-coil circuit.

Although the T-coil circuit introduces a little delay, the resulting pulse response is more desirable for
data transmission, with a flat top and more compact rising and falling edges.
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S-Parameters

The Linear Circuit Wizard defines ports as being either input or output and as being either voltage or
current. In contrast, S-parameters are expressed in terms on incoming waves and outgoing waves at
each port, based on an assumed transmission line impedance at each port. You therefore need some
specific assumptions and some conversion to obtain S-parameters for a linear circuit.

The example makes these assumptions:

1 Each port is connected to a source/load impedance of Z0 (typically 50 Ω).
2 Each port is driven by an independent voltage source driving a resistor whose value is equal to

the source/load impedance. This voltage source is an input voltage port.
3 The voltage at each port is available as an output. This is a voltage output port.
4 The current flowing through each source/load resistor is available as an output. This is a current

output port. In the context of the SPICE netlist, this current is measured by the independent
voltage source that defines the input voltage port.

Given these assumptions, you can transform the port node voltages and currents into incoming and
outgoing waves to produce S-parameters. Given incoming wave voltage  and outgoing wave voltage

 at a port with characteristic impedance , and remembering that the port current is defined as
an output current of the circuit, the port voltage and port current are:
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Solving these equations yields the resulting waves:

The S parameter matrix is then a matrix of outgoing wave amplitudes divided by incoming wave
amplitudes.

The netlist TCoil.sp satisfies this set of assumptions for S-parameter Port 1 through the following
group of statements:

* Port 1 definition
V1 1 0
R1 1 2 50
.print V(2 0) I(V1)

V1 defines the voltage input port and R1 is the source/load resistor. The .print statement defines a
voltage output port from node 2 to the return node and a current output port whose output is the
current flowing through the voltage source V1.

A similar set of statements defines S-parameter Port 2.

You can calculate the S-parameter data by first defining a desired frequency scale and then using the
generateSParameterData helper function. Parse the netlist of interest and then click the Report
poles and zeros button. Obtain the S-parameter data from DC to 100 GHz in 1 GHz steps.

freq = (0:100)*1e9;
[data,errmsg] = generateSParameterData('TCoil/Linear Circuit Wizard',freq);

The resulting data structure is directly compatible with the S-parameters object and the rfwrite
function in the RF Toolbox™.
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PLL Block Level Examples

• “Measuring VCO Phase Noise to Compare with Target Profile” on page 4-2
• “Finding Voltage Sensitivity and Quiescent Frequency of VCO” on page 4-4
• “Frequency Division Using Single Modulus Prescaler” on page 4-6
• “Frequency Division Using Dual Modulus Prescaler” on page 4-8
• “Frequency Division Using Fractional Clock Divider with Accumulator” on page 4-10
• “Frequency Division Using Fractional Clock Divider with DSM” on page 4-12
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Measuring VCO Phase Noise to Compare with Target Profile
This example shows how to validate the phase noise profile of a VCO device under test (DUT) using a
VCO Testbench.

Open the model vcoPhaseNoise . The model consists of a VCO block and a VCO Testbench.

open_system('vcoPhaseNoise.slx')

The voltage sensitivity of the VCO is set to 1.25e6 Hz, and the free running frequency is 2e9 Hz.

The testbencch is set to measure the Phase noise metric of the VCO in the Measurement option.
The Control voltage provided to the input of VCO is 4 V. So, the VCO operates at 2.5 GHz
frequency. Click the Autofill setup parameters button to automatically calculate the Resolution
bandwidth (Hz), and No. of spectral averages.

Run simulation for 8e-4 s, as recommended in the Block Parameters dialog box. Double click the
VCO Testbench block to open the Block Parameters dialog box. Click on the Plot measurement
button.
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The operating frequency matches the predicted frequency 2.5 GHz. The measured phase noise
profile also matches the target profile.

 Measuring VCO Phase Noise to Compare with Target Profile

4-3



Finding Voltage Sensitivity and Quiescent Frequency of VCO
This example shows how to find VCO metrics such as voltage sensitivity (Kvco) and quiescent
frequency or free running frequency (Fo).

Open the model vcoCharacteristics. The model consists of a VCO block and a VCO Testbench.

open_system('vcoCharacteristics.slx')

The testbench is set to measure the Kvco and Fo metric of the VCO in Measurement option. Range
of control voltage (V) provided to the input of VCO is set to [1 10].

Run the model for 1.2e-3 s. Double click the VCO Testbench to open the Block Parameters dialog
box. Click on the Plot measurement button.

From the simulation, the free running frequency is 2.5 GHz, and voltage sensitivity is 125 MHz/V.
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Frequency Division Using Single Modulus Prescaler
Open the model singleModulusPrescaler. The model consists of a Pulse Generator and a Single
Modulus Prescaler block.

open_system('singleModulusPrescaler.slx')

The period of the incoming pulse at the clk in port is 4e-7 s. So, the incoming signal has a frequency
of 2.5 MHz. The div-by value is set at 2.

Run the simulation for 2e-6 s. The frequency of the output signal is 1.25 MHz.
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Frequency Division Using Dual Modulus Prescaler
Open the model Dual_Modulus_Prescaler_Ex. The model consists of a Pulse Generator and a Dual
Modulus Prescaler block.

open_system('Dual_Modulus_Prescaler_Ex.slx')

The period of the incoming pulse at the clk in port is 1e-7 s. So, the incoming signal has a frequency
of 10 MHz. The Program counter value, Prescaler divider value, and Swallow counter value are
4, 1, and 1, respectively. The effective clock divider value of the dual modulus prescaler is 5.

Run the simulation for 1e-4 s. The frequency of the output signal is 2.002 MHz.
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Frequency Division Using Fractional Clock Divider with
Accumulator

Open the model fractionalClockDivider_w_Accumulator. The model consists of a Pulse
Generator and a Fractional Clock Divider with Accumulator block.

open_system('fractionalClockDivider_w_Accumulator.slx')

The period of the incoming pulse at the clk in port is 4e-7 s. So, the incoming signal has a frequency
of 2.5 MHz. The div-by value is set at 2.5.

Run the simulation for 1e-4 s. The frequency of the output signal is 1.002 MHz.
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Frequency Division Using Fractional Clock Divider with DSM
Open the model fractionalClockDivider_w_DSM. The model consists of a Pulse Generator and a
Fractional Clock Divider with Accumulator block.

open_system('fractionalClockDivider_w_DSM.slx')

The period of the incoming pulse at the clk in port is 4e-7 s. So, the incoming signal has a frequency
of 2.5 MHz. The div-by value is set at 2.5. The clock divider uses a second order delta sigma
modulator.

Run the simulation for 1e-4 s. The frequency of the output signal is 1.002 MHz.
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Data Converter Block Level Examples

• “Measure Offset and Gain Error of Binary Weighted DAC” on page 5-2
• “Measure AC Performance Metrics of Binary Weighted DAC” on page 5-4
• “Measure AC Performance Metrics of DAC Using DAC AC Measurement” on page 5-6
• “Measure DC Performance Metrics Using DAC DC Measurement” on page 5-8
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Measure Offset and Gain Error of Binary Weighted DAC
This example shows how to find the offset and gain errors of a binary weighted DAC block.

Open the model dac_dc_error. The model consists of a Binary Weighted DAC block and a DAC
Testbench.

model = 'dac_dc_error';
open_system(model)

The parameters under the General tab of the Binary Weighted DAC are kept at their default values.
The impairments are enabled in the Impairments tab, and the value of the offset error and gain
error are set to 2 LSB and 1 LSB, respectively.

In the DAC Testbench block, the Measurement option is set to DC. In the Setup tab, the Autofill
setup parameter button is used to automatically propagate the setup parameters from the DAC
block. In the Target Metric tab, the Autofill target metric button is used to automatically set the
target offset and gain errors from the DAC block. All other parameters are kept at their default
values.

Run the simulation for 7.68e-04 s. The measured offset and gain errors are 2.00 LSB and 1.00
LSB, respectively.

The DAC transfer curve matches the best linear fit method. Using best fit method, maximum INL is
-3.3e-4 LSB and maximum DNL is 4.6e-4 LSB.
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Measure AC Performance Metrics of Binary Weighted DAC
This example shows how to find the AC performance metrics such as SNR, SINAD, SFDR, ENOB,
noise floor and settling time of a binary weighted DAC block.

Open the model dac_ac_error. The model consists of a Binary Weighted DAC block and a DAC
Testbench.

model = 'dac_ac_error';
open_system(model)

The parameters of the Binary Weighted DAC are kept at their default values.

In the DAC Testbench block, the Measurement option is set to AC. In the Setup tab, the Autofill
setup parameter button is used to automatically propagate the setup parameters from the DAC
block. Show spectrum analyzer during simulation option is also checked.

Run the simulation for 9e-3 s.

sim(model);
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The measured AC performance metrics are displayed on the DAC Testbench block.
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Measure AC Performance Metrics of DAC Using DAC AC
Measurement

This example shows how to find the AC performance metrics such as SNR, SINAD, SFDR, ENOB, and
noise floor using a DAC AC Measurement block.

Open the model dac_ac_measure. The model consists of a Signal Generator, a Flash ADC, a Binary
Weighted DAC block, and a DAC AC Measurement block.

model = 'dac_ac_measure';
open_system(model)

The Flash ADC acts as the input to the Binary Weighted DAC. The ADC uses an internal start clock
whose Conversion start frequency (Hz) is 1e6 and RMS aperture jitter (s) is 1e-12. The input
analog frequency to the Flash ADC from the Signal Generator is 950 Hz.

The Number of bits of the Binary Weighted DAC is set to 10. All other parameters are kept at their
default values.

The Digital signal frequency (Hz) of the DAC AC Measurement block is 950 and the Start
conversion frequency (Hz) is 1e6.

Run the simulation for 0.09474 s.

sim(model)

Warning: An error has occurred during refresh of Action named autosarAppAction. 
Warning: Undefined function 'autosar.ui.toolstrip.refresher.refreshAutosarApp'
for input arguments of type 'SLM3I.CallbackInfo'. 

ans = 

  Simulink.SimulationOutput:
                   tout: [3806174x1 double] 

     SimulationMetadata: [1x1 Simulink.SimulationMetadata] 
           ErrorMessage: [0x0 char] 

5 Data Converter Block Level Examples

5-6



The measured AC performance metrics are displayed on the DAC AC Measurement block.
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Measure DC Performance Metrics Using DAC DC Measurement
This example shows how to find DC performance metrics such as offset error, gain error, INL, and
DNL.

Open the model dac_dc_measure. The model consists of a Signal Generator, a Flash ADC, a Binary
Weighted DAC block, and a DAC AC Measurement block.

model = 'dac_dc_measure';
open_system(model)

The Flash ADC acts as the input to the Binary Weighted DAC. The ADC uses an internal start clock
whose Conversion start frequency (Hz) is 1e6 and RMS aperture jitter (s) is 1e-12. The input
analog frequency to the Flash ADC from the Signal generator is 900 Hz.

The Number of bits of the Binary Weighted DAC is set to 10. The impairments are enabled in the
Impairments tab, and the value of the offset error and gain error are set to 2 LSB and 1 LSB,
respectively. All other parameters are kept at their default values.

The Number of bits and Conversion start frequency (Hz) of the DAC DC Measurement block are
10 and 1e6, respectively. The Settling time (s) of the DAC DC Measurement block is set to 4e-7,
twice the Settling time (s) of the Binary Weighted DAC to ensure the entire transition period is not
considered as part of the steady-state DC measurements.

Run the simulation for 0.02558 s. The measured AC performance metrics are displayed on the DAC
AC Measurement block.
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Measure Timing Metrics of Periodic Signal
Measure the period, frequency, rise time, fall time, and duty cycle of a periodic signal. Also measure
the delay of the input signal with respect to a reference signal

Open the model time_metrics_measure. The model consists of a Timing Measurement block. A
period sine wave of 50e6 Hz is applied at the reference input signal. A variable time delay of 1e-11 s
is applied at the test input port. The Timing Measurement block is set to measure the period,
frequency, 10%-90% rise time, 90%-10% fall time, duty cycle, and the delay with respect to the test
input port.

model = 'time_metrics_measure';
open_system(model)

Run the model for 100 microseconds. The results are displayed on a Display block.

• Period = 0.2 microseconds
• Frequency = 50 MHz
• Rise time = 5.903 nanoseconds
• Fall time = 5.903 nanoseconds
• Duty cycle = 0.5
• Delay = 10 picoseconds
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Mix Analog and Digital Signals

• “Model Linear Circuit Response from SPICE Netlist” on page 7-2
• “Define Device Noise Using Linear Circuit Wizard” on page 7-7
• “Ports Supported in Linear Circuit Wizard” on page 7-9
• “MATLAB Systems Generated from Linear Circuit Wizard” on page 7-11
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Model Linear Circuit Response from SPICE Netlist
In this section...
“Supported SPICE Syntax” on page 7-2
“LAPLACE Keyword” on page 7-5

The Linear Circuit Wizard block parses a SPICE netlist to model the response of a desired linear
circuit such as a custom filter design or a circuit with parasitics. The block supports a limited number
of SPICE netlist constructs, specifically conforming to Berkeley SPICE syntax [1] or the HSPICE
syntax [2]. Edit your SPICE netlist so that the desired circuit is described at the top level of the netlist
by supported netlist constructs. The block ignores any statements that use unsupported netlist
syntaxes.

The SPICE netlist can contain passive devices, independent sources, controlled sources, and
subcircuits.

If present, independent sources are interpreted as input ports by the Linear Circuit Wizard block. The
name of the input port is the designator for the circuit element, the port type matches the source
type, and the nodes are the nodes to which the source is connected. For each such input port, the
stimulus is the Simulink® signal connected to the port, not the description provided by the SPICE
netlist.

The output ports are defined by .PRINT or .PLOT statements conforming to the HSPICE syntax.
Because the SPICE statements do not supply port names for probed voltages, the Linear Circuit
Wizard block supplies default names for voltage output ports. Current output ports are named after
the independent voltage source used to sense the current. The netlist must contain all of the circuit
nodes and circuit elements required to support the output ports.

The Linear Circuit Wizard block does not support mathematical functions.

Supported SPICE Syntax
Statements can be continued onto multiple lines by starting each continuation line with a plus sign
("+"). For example, these two statements are equivalent.

E1 2 0 LAPLACE 3 4 6.3e7/6.3e4 1 E1 2 0 LAPLACE 3 4
+ 6.3e7/6.3e4 1

Three forms of comment are supported.

• Block comment. The comment block starts with the line #com and ends with the line #endcom. For
example:

#com
When you’re lying awake with a dismal headache
and repose is taboo’d by anxiety,
I conceive you may use any language you choose
to indulge in without impropriety.
#endcom

• Line comment. The comment is a line that starts with an asterisk ("*"). For example:

* Gilbert, Iolanthe, act 2, “Love, unrequited, robs me of my rest”, line 5
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• End of line comment. The comment follows a pipe symbol ("|") and is ignored. For example:

.end | That’s all, folks.

The node labeled “0” is defined as the common return node for the circuit.

Component Syntax Comment
Passive Devices
Resistor R<name> <+ node> <- node>

<value>
Create a resistor with a specific
value.

Capacitor C<name> <+ node> <- node>
<value>

Create a capacitor of a specific
value.

Inductor L<name> <+ node> <- node>
<value>

Create an inductor of a specific
value.

Mutual inductance K<name> <inductor name>
<inductor name> <value>

Create a mutual inductance
coupling between two inductors.

For each inductor, current flow
in the positive direction is from
the first node to the second
node in the statement that
creates the inductor.

The circuit element value is the
mutual inductance factor k,
where 0 < k < 1.

Independent Sources
Independent voltage source V<name> <+ node> <- node> Create an input voltage port in

the Simulink block.
Independent current source I<name> <+ node> <- node> Create an input current port in

the Simulink block.
Controlled sources
Voltage controlled voltage
source

E<name> <+ node> <- node>
<+ control node> <- control
node> <gain>

E<name> <+ node> <- node>
LAPLACE <+ control node> <-
control node> <k0, k1, …km>/
<d0,d1,…dn>

Create a voltage controlled
voltage source.

The gain can be a constant
value or a rational transfer
function.

See “LAPLACE Keyword” on
page 7-5 for the transfer
function definition.
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Component Syntax Comment
Current controlled current
source

F<name> <+ node> <- node>
<voltage source name> <gain>

F<name> <+ node> <- node>
LAPLACE <voltage source
name> <k0, k1, …km>/<d0,d1,
…dn>

Create a current controlled
current source.

The gain can be a constant
value or a rational transfer
function.

The current through the
controlling voltage source
determines the output current.
The controlling source must be
an independent voltage source,
although it does not need to
have a zero DC value.

See “LAPLACE Keyword” on
page 7-5 for the transfer
function definition.

Voltage controlled current
source

G<name> <+ node> <- node>
<+ control node> <- control
node> <gain>

G<name> <+ node> <- node>
LAPLACE <+ control node> <-
control node> <k0, k1, …km>/
<d0,d1,…dn>

Create a voltage controlled
current source.

The gain can be a constant
value or a rational transfer
function.

The current through the
controlling voltage source
determines the output current.
The controlling source must be
an independent voltage source,
although it does not need to
have a zero DC value.

See “LAPLACE Keyword” on
page 7-5 for the transfer
function definition.

Current controlled voltage
source

• H<name> <+ node> <-
node> <voltage source
name> <gain>

• H<name> <+ node> <-
node> LAPLACE <voltage
source name> + <k0, k1, …
km>/<d0,d1,…dn>

Create a current controlled
voltage source.

The gain can be a constant
value or a rational transfer
function.

See “LAPLACE Keyword” on
page 7-5 for the transfer
function definition.

Subcircuit
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Component Syntax Comment
Subcircuit X<name> <external node

names> <subcircuit name>
<parameter list>

Create an instance of a
subcircuit. The number of
external nodes must equal the
number of nodes in the
subcircuit definition. Entries in
the parameter list take the form
<name> = <value>.

Commands
.PARAM .param <param name> =

<expression>
Definable parameter

.SUBCKT .subckt <subname> <external
node names> <parameter list>

Begin the definition of a
subcircuit. The number of
external nodes is arbitrary.
Entries in the parameter list
take the form <name> =
<value>. Subcircuit definitions
can be nested.

.ENDS .ends

.ends <subname>

Directive to end a subcircuit
definition.

.END .end Directive to end the netlist.
Optional command.

.INC .inc[lude] <file name> Directive to include contents of
an external netlist

.PRINT .print V(<one or two nodes>) |
I(<voltage source name>)

Directive to define output ports.
Multiple voltage and current
outputs can be defined in a
single statement.

.PLOT .plot V(<one or two nodes>) |
I(<voltage source name>)

Directive to define output ports.
Multiple voltage and current
outputs can be defined in a
single statement.

LAPLACE Keyword
The LAPLACE keyword defines a Laplace domain transfer function for a controlled voltage or current
source. The transfer function is defined by a series of transfer function numerator coefficients, from
constant term to highest power of s, followed by a forward slash (‘/’), followed by a series of
denominator coefficients from constant term to highest power of s.

References
[1] "SPICE Circuit Components." http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/UserGuide/

elements_fr.html.

[2] "HSPICE® User Guide: Simulation and Analysis." https://cseweb.ucsd.edu/classes/wi10/cse241a/
assign/hspice_sa.pdf.
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See Also
Linear Circuit Wizard

Related Examples
• “Circuit Design Details Affect PLL Performance” on page 3-13

More About
• “Converting a SPICE Netlist to Simscape Blocks” (Simscape Electrical)
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Define Device Noise Using Linear Circuit Wizard
You can use the Linear Circuit Wizard block to generate device noise and model the response of a
linear circuit. The device noise generators are built inside the MATLAB System block that the Linear
Circuit Wizard configures, and include flicker noise as well as uniformly distributed Gaussian noise.

Note The Linear Circuit Wizard also offers a Device noise source type of input port through which
you can inject your own model of device noise. For any given device, you should use either a Device
noise source input port or an internal device noise generator, but not both.

Device List
The device noise generators are designed to model the current noise produced by resistors and
semiconductor devices such as MOSFETs. In the Device Noise Generators tab of the Linear Circuit
Wizard, you can select from a list of resistors and controlled current sources, which are the circuit
elements for which device noise can be modeled. To model a source of device noise, choose the
circuit element from the list, enable its device noise generator, and set the parameters for that device
noise generator. To disable a device noise generator, select the circuit element and disable its device
noise generator.

Device Noise Specification
You can configure a device noise generator using three parameters: Noise coefficient, Corner
frequency, and Independent noise source/Noise generator seed.

Noise Coefficient

The Noise coefficient parameter defines the spectral density of the generated noise through the
equation

i2 = 4kTG

where i2 is the noise spectral density in A2/Hz, k is Boltzmann’s constant, T is the temperature in
degrees Kelvin, and G2 is the noise coefficient in units of conductance (Siemens or 1/Ohms).

For resistors, the device noise is Johnson/Nyquist noise, and the noise coefficient is G = 1/R, where R
is the conductance of the resistor. The Linear Circuit Wizard performs this calculation from the
resistor value in the netlist and sets the noise coefficient to the resulting conductance.

For MOSFETs, the noise coefficient is G = γgdso, where γ has a lower bound of 2/3 for MOSFETs with
relatively long channel length, and can be 1.5 or greater for short channel MOSFETs. gdso is the
output conductance at zero drain bias. Because γ is process dependent, you must perform this
calculation and enter the resulting noise coefficient.

Corner Frequency

The Corner frequency parameter defines the flicker noise for the device. Flicker noise spectral
density increases as approximately 1/f. The corner frequency is the frequency at which the flicker
noise is approximately equal to the spectral density of the uniformly distributed thermal noise. The
corner frequency is process dependent, but typically has a value around 1 kHz.

Within the MATLAB System block configured by the Linear Circuit Wizard, the frequency response of
the flicker noise is implemented by a filter which accurately creates the 1/f spectral density from the
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corner frequency to four decades below the corner frequency. At even lower frequencies, the modeled
flicker noise is essentially constant.

Independent Noise Source/Noise Generator Seed

While most sources of device noise are statistically independent of each other, there are cases in
which the same noise process is affects the outputs of multiple devices. For the most common case,
enable Independent noise source. However, when multiple devices must be driven by the same
stochastic process, disable Independent noise source on the device noise generator for each of
those devices and set Noise generator seed to the same positive integer. The resulting device noise
generators share the same stochastic process but are statistically independent of all other device
noise generators.

See Also
Linear Circuit Wizard

More About
• “Circuit Design Details Affect PLL Performance” on page 3-13
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Ports Supported in Linear Circuit Wizard
The Linear Circuit Wizard block uses the port definitions you supply either through the SPICE netlist
or the Linear Circuit Wizard’s parameter dialog to supply ports on the blocks it produces that are
compatible with signals from other Simulink blocks.

Block Ports
The input ports on the blocks that the Linear Circuit Wizard produces accept input signals that
represent either a voltage or a current. Similarly, the output ports produce signals which represent
either a voltage or a current. Both input and output signals must use a fixed step discrete sample
time equal to the block’s sample time.

There are five types of ports.

Port Type Port Circuit Definition Definition from Netlist
Voltage input The input signal is the node

voltage of a positive circuit node
minus the node voltage of a
negative circuit node.

Independent voltage source

Current input The input signal is a current
flowing into a positive circuit
node and back out through a
negative circuit node.

Independent current source

Voltage output The output signal is the node
voltage of a positive circuit node
minus the node voltage of a
negative circuit node.

V(<node> <node>) clause
in .print or .plot statement

Current output The output signal is the current
flowing through a voltage
source from the positive output
node to the negative output
node. The voltage source must
be defined in the SPICE netlist.

I(<voltage source>) clause
in .print or .plot statement

Device noise source The input signal is a device
noise current that is assumed to
be flowing through a resistor or
controlled current source in the
circuit. The device must be
defined in the SPICE netlist. The
goal is to make it easier for you
to apply your own device noise
model to the circuit.

 

Parameter Dialog
Through the mask parameter dialog of the Linear Circuit Wizard, you can add or delete ports and
define the order in which the ports are listed.
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The parameter dialog displays the type, name, and nodes of a single port, along with an indication of
that port’s position in the list of ports. If no ports have been defined yet, then the type, name, and
nodes are blank and require your input. Choose a port from the port list, modify the port definition as
desired, and then choose an action.

Port list: Each entry in the port list is a number representing the position in the list, followed by the
port name.

Port type: Choose one of the five port types described in the table above.

Port name: The port name is a character array obtained by applying the eval function to the
parameter value that you specify. You can specify either a literal character array by enclosing the
name in single quotes (for example, 'port1') or the name of a workspace variable.

Port nodes: Select the port nodes from a list. The contents of the list are derived from the netlist,
and depend on the port type you have selected.

• For the Voltage input, Current input, and Voltage output port types, the list contains the
names of circuit nodes.

• For the Current output port type, the list contains the names of voltage sources.
• For the Device noise source port type, the list contains the designators of circuit elements that

could be sources of device noise.

Actions: The actions enabled depend on the content of the port list.

• Create: Add a new port to the list, based on the port definition currently displayed.
• Save: Save the currently displayed port definition to its current location in the port list.
• Delete: Remove the currently displayed port from the port list.
• Move up: Move the currently displayed port up one position in the port list.
• Move down: Move the currently displayed port down one position in the port list.

Port Report
You can obtain a table displaying the ports you’ve defined by clicking the Export ports button from
the . This creates the struct array LinearCircuitWizardPorts in your base workspace. Display or
inspect this struct array to see your port definitions in a table.

See Also
Linear Circuit Wizard

More About
• “Circuit Design Details Affect PLL Performance” on page 3-13
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MATLAB Systems Generated from Linear Circuit Wizard
You can use a single Linear Circuit Wizard block to configure one or more MATLAB System blocks to
be integrated into a larger Simulink model. The input and output ports of each MATLAB System block
will implement the ports defined in the SPICE netlist and parameter dialog, the block icon will be the
Circuit design name specified in the parameter dialog, and the name given to the block in your
model will be the Block name specified in the parameter dialog. Each MATLAB System block will
have a fixed step discrete sample time that can either be inherited from another block in the model or
set by the MATLAB System block itself.

Verify MATLAB System Block Configuration
Define and verify the configuration of a MATLAB System block in the Linear Circuit Wizard before
building it. You can also use the Linear Circuit Wizard to modify the configuration of a MATLAB
System block that it has already constructed by setting Block name to the name of the block to be
modified.

You can verify the Circuit design name, Block name, Netlist file name, port definitions, and
device noise generators. You can also verify the response of the block using either transfer function
plots or a transfer function pole/zero report. Both options are available as soon as the netlist file is
parsed and at least one output port is defined.

Plot transfer functions: Click the Plot transfer functions button to obtain a plot of all of the
transfer functions the block will implement. This produces a figure window with a separate tab for
each output port. Each output port tab plots the transfer function magnitude from each input port
and device noise generator to that output port. The plot scale is decibels of gain versus log frequency,
making it easier to identify approximate pole and zero locations as well as overall gain.

Export poles and zeros: Click the Export poles and zeros button to obtain a report of the transfer
function poles and zeros. This produces the struct array LinearCircuitWizardPoleZero in your
base workspace. The fields of each struct are:

• Poles: A row vector of complex pole locations in the Laplace domain
• Zeros: A cell matrix in which each cell is a row vector of complex zero locations in the Laplace

domain, one for each channel through the block
• Gains: A matrix of real-valued gains, one for each channel through the block

Build MATLAB System Block
To configure a new or existing MATLAB System block to reflect the configuration currently defined in
the Linear Circuit Wizard, click the Build/modify block button. If in doubt, look for a warning
message in the Linear Circuit Wizard parameter dialog indicating that the block does not reflect the
current configuration. Clicking the Build/modify block button will resolve the warning.

Sample Time
The sample time of the MATLAB System block is specified in terms of a sample rate (frequency)
rather than directly as a sample time. You can configure the sample time of the MATLAB System
block through its parameter dialog. The default condition is for the block to inherit its sample time.
To set the sample time of the block directly, disable Inherit sample rate from input. This enables
the Sample rate parameter. Set the sample rate to the desired frequency.
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MATLAB System blocks configured by the Linear Circuit Wizard often model analog circuits that are
combined with other blocks that model digital circuits. Whereas analog circuits are usually modeled
using a fixed step discrete sample time, digital circuits are usually modeled using a variable step
discrete sample time. For more information on combining fixed step discrete sample time with
variable step discrete sample time, see the example “Digital Timing Using Fixed Step Sampling” on
page 3-6.

See Also
Linear Circuit Wizard

More About
• “Circuit Design Details Affect PLL Performance” on page 3-13
• “Digital Timing Using Fixed Step Sampling” on page 3-6
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